Historia

Wyjaśnij, jak przejawiała się dyktatura partii 4.8 gwiazdek na podstawie 10 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Historia

Wyjaśnij, jak przejawiała się dyktatura partii

1
 Zadanie

2
 Zadanie

Dyktatura partii komunistycznej - PZPR

Ludzie sprawujący władzę w powojennej Polsce byli członkami partii komunistycznej, nazwanej Polską Zjednoczoną Partią Robotniczą (PZPR). Wszystkie najważniejsze dla państwa decyzje podejmowano w wąskimkierownictwie. Rozbudowana struktura partyjna pozwalała na kontrolowanie działalności organów państwowych i życia społecznego. PZPR była kontrolowała przez władzę w Moskwie. Komuniści zlikwidowali wolność słowa, wprowadzili cenzurę, krwawo rozprawili się z żołnierzami podziemia niepodległościowego. Ograniczyli kontakty polskiego społeczeństwa z krajami demokratycznymi. Ponadto, nowe władze prowadziły zaciekłą walkę z Kościołem katolickim w Polsce.

DYSKUSJA
klasa:
Informacje
Autorzy: Bogumiła Olszewska, Wiesława Surdyk-Fertsch
Wydawnictwo: PWN
Rok wydania:
ISBN: 9788326725739
Autor rozwiązania
user profile

Paulina

56158

Nauczyciel

Wiedza
Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom