Historia

Praca z tekstem 4.17 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Historia

1. Gdzie odbył się sejm rozbiorowy?

- Sejm rozbiorowy odbył się w Warszawie.

2. Wyjaśnij, dlaczego król zgodził się na sejm rozbiorowy.

- Król Stanisław August Poniatowski zgodził się na sejm rozbiorowy, kiedy przedstawiciele państw ościennych zagrozili mu rozszerzeniem terenów zaborczych.

3. Przedstaw metody, które stosowano, by "przekonać" posłów do zatwierdzenia rozbiorów.

- By "przekonać" posłów do zatwierdzenia rozbiorów stosowano różnorakie metody. Część posłów przykupywano, część zastraszano, pozostałych przekonywano, że dalszy opór bez bezsensowny. 

DYSKUSJA
klasa:
Informacje
Autorzy: Bogumiła Olszewska, Wiesława Surdyk-Fertsch
Wydawnictwo: PWN
Rok wydania:
ISBN: 9788326725739
Autor rozwiązania
user profile

Paulina

68517

Nauczyciel

Wiedza
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Odejmowanie ułamków dziesiętnych

Odejmowanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do odejmowania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki odejmujemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecina;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 3,41-1,54=? $$
    odejmowanie-ulamkow

    $$ 3,41-1,54=1,87 $$  

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom