Historia

Oceń, czy poniższe zdania są prawdziwe. 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Historia

Oceń, czy poniższe zdania są prawdziwe.

1
 Zadanie

2
 Zadanie
Zadanie mega premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
user avatar
raner88

7 czerwca 2017
W ćwiczeniach jest błąd i zamiast F są same litery P.
user avatar
Paulina

55979

8 czerwca 2017
@raner88 Cześć, zgadza się ale u nas znajdziesz prawidłowe rozwiązanie zadania:)
klasa:
Informacje
Autorzy: Tomasz Maćkowski, Katarzyna Panimasz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Paulina

55812

Nauczyciel

Wiedza
Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $$1 mm^2$$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $$1 mm^2$$
  • $$1 cm^2$$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $$cm^2$$
  • $$1 dm^2$$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $$1 dm^2$$
  • $$1 m^2$$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $$1 m^2$$
  • $$1 km^2$$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $$1 km^2$$
  • $$1 a$$ (ar) → pole kwadratu o boku 10 m jest równe 100 $$m^2$$
  • $$1 ha$$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $$m^2$$

Zależności między jednostkami pola:

  • $$1 cm^2 = 100 mm^2$$ ; $$1 mm^2 = 0,01 cm^2$$
  • $$1 dm^2 = 100 cm^2 = 10 000 mm^2$$; $$1 cm^2 = 0,01 dm^2$$
  • $$1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$$; $$1 dm^2 = 0,01 m^2$$
  • $$1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$$; $$1 ha = 0,01 km^2$$
  • $$1 a = 100 m^2$$; $$1 m^2 = 0,01 a$$
  • $$1 ha = 100 a = 10 000 m^2$$; $$1 a = 0,01 ha$$

Przykłady wyprowadzania powyższych zależności:

  • $$1 cm^2 = 10mm•10mm=100$$ $$mm^2$$
  • $$1 cm^2 = 0,1dm•0,1dm=0,01$$ $$dm^2$$
  • $$1 km^2 = 1000m•1000m=1000000$$ $$m^2$$
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom