Korzystając z wiadomości podanych w podręczniku - Zadanie 5: Historia wokół nas 4 2015 - strona 58
Historia
Wybierz książkę
Korzystając z wiadomości podanych w podręczniku 4.57 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 4 Klasa
  3. Historia

Korzystając z wiadomości podanych w podręczniku

2
 Zadanie
3
 Zadanie
4
 Zadanie

5
 Zadanie

Życie XVI i XVII - wiecznych chłopów nie należało

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Radosław Lolo, Anna Pieńkowska, Rafał Towalski
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile

Paulina

74933

Nauczyciel

Wiedza
Dzielenie z resztą

Dzielenie z resztą to takie dzielenie, w którym otrzymujemy pewien iloraz oraz resztę. 


Sposób wykonywania dzielenia z resztą:

  1. Podzielmy liczbę 23 przez 3.

  2. Wynikiem dzielenia nie jest liczba całkowita (pewna część nam pozostanie). Maksymalna liczba 3, które zmieszczą się w 23 to 7.

  3. `7*3=21` 

  4. Różnica między liczbami 23 i 21 wynosi `23-21=2` , zatem resztą z tego dzielenia jest liczba 2.

  5. Poprawny zapis działania: `23:3=7 \ "r" \ 2` $r.2$


Przykłady:

  • `5:2=2 \ "r" \ 1` 
    Sprawdzenie:  `2*2+1=4+1=5` 

  • `27:9=3 \ "r" \ 0` 
    Sprawdzenie:  `3*9+0=27+0=27` 

  • `53:5=10 \ "r" \ 3` 
    Sprawdzenie: `10*5+3=50+3=53` 

  • `102:20=5 \ "r" \ 2` 
    Sprawdzenie:  `5*20+2=100+2=102` 


Zapamiętaj!!!

Reszta jest zawsze mniejsza od dzielnika.

Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $1 mm^2$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $1 mm^2$
  • $1 cm^2$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $cm^2$
  • $1 dm^2$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $1 dm^2$
  • $1 m^2$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $1 m^2$
  • $1 km^2$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $1 km^2$
  • $1 a$ (ar) → pole kwadratu o boku 10 m jest równe 100 $m^2$
  • $1 ha$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $m^2$

Zależności między jednostkami pola:

  • $1 cm^2 = 100 mm^2$ ; $1 mm^2 = 0,01 cm^2$
  • $1 dm^2 = 100 cm^2 = 10 000 mm^2$; $1 cm^2 = 0,01 dm^2$
  • $1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$; $1 dm^2 = 0,01 m^2$
  • $1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$; $1 ha = 0,01 km^2$
  • $1 a = 100 m^2$; $1 m^2 = 0,01 a$
  • $1 ha = 100 a = 10 000 m^2$; $1 a = 0,01 ha$

Przykłady wyprowadzania powyższych zależności:

  • $1 cm^2 = 10mm•10mm=100$ $mm^2$
  • $1 cm^2 = 0,1dm•0,1dm=0,01$ $dm^2$
  • $1 km^2 = 1000m•1000m=1000000$ $m^2$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY2955ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5448WIADOMOŚCI
NAPISALIŚCIE806KOMENTARZY
komentarze
... i7960razy podziękowaliście
Autorom