Historia

Dlaczego igrzyska olimpijskie jednoczyły Greków? 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Historia

Dlaczego igrzyska olimpijskie jednoczyły Greków?

1
 Zadanie

2
 Zadanie
3
 Zadanie

Igrzyska olimpijskie jednoczyły Greków, ponieważ na czas rywalizacji ogłaszano "święty rozejm" i przerywano działania wojenne, tak aby zawodnicy oraz widzowie mogli bez przeszkód dotrzeć na igrzyska, a po ich zakończeniu - powrócić do domu. W tym wielkim święcie uczestniczyli wyłącznie Grecy, dzięki czemu czuli, że tworzą prawdziwą wspólnotę. Igrzyska trwały pięć dni. Najważniejszą konkurencją był pięciobój, składający się z biegu, skoku w dal, rzutu dyskiem i oszczepem oraz zapasów. W tarkcie igrzysk odbywały się również walki bokserskie oraz wyścigi rydwanów. Przed rozpoczęciem rozgrywek zawodnicy składali uroczystą przysięgę, podczas której obiecywali, że będą walczyć uczciwie. Ostatniego dnia igrzysk zwycięzcom wręczano nagrody. Uważano ich w Grecji za prawdziwych bohaterów. Listy z imionami zwycięzców kolejnych igrzysk były przechowywane w Olimpii i stale uzupełniane.

DYSKUSJA
Informacje
Bliżej historii 1
Autorzy: Kowalewski Krzysztof, Kąkolewski Igor, Plumińska-Mieloch Anita
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $$1/{10}= 0,1$$
  • $$2/{100}= 0,02$$
  • $${15}/{100}= 0,15$$
  • $$3/{1000}= 0,003$$
  • $${25}/{10}= 2,5$$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Zobacz także
Udostępnij zadanie