Historia

Bliżej historii 1 (Podręcznik, WSiP)

Jak wytłumaczyłbyś słowo "historia"? 4.62 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Historia

Jak wytłumaczyłbyś słowo "historia"?

1
 Zadanie

2
 Zadanie
3
 Zadanie

Historia - to nauka o przeszłości, która zajmuje się badaniem działań oraz wytworów ludzkich, aż do najstarszych poświadczonych pismem świadectw. Jej badacze poznają dzieje, zaznajamiając się ze źródłami historycznymi, czyli wszelkimi utrwalonymi i zachowanymi śladami działalności, myśli oraz życia człowieka. Historia jest "nauczycielką życia", wskazuje współczesnym jakich błędów nie warto powtarzać.

DYSKUSJA
Informacje
Bliżej historii 1
Autorzy: Kowalewski Krzysztof, Kąkolewski Igor, Plumińska-Mieloch Anita
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Paulina

10632

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Zobacz także
Udostępnij zadanie