Historia

Co się zmieniło w Łodzi w latach 1820 4.5 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 6 Klasa
  3. Historia

Co się zmieniło w Łodzi w latach 1820

1
 Zadanie

2
 Zadanie

  • Co się zmieniło w Łodzi w latach 1820 - 1914.

W 1820 roku Łódź była niewielką osadą, liczącą zaledwie 767 mieszkańców, pod koniec stulecia żyło tam już 300 tysięcy ludzi, a w 1914 roku prawie 480 tysięcy mieszkańców. Wszystko to za sprawą licznych zakładów włókienniczych, specjalizujących się zwłaszcza w przeróbce bawełny. To właśnie one nadały kształt miastu. W Łodzi kwitł przemysł włókienniczy. W wielkich fabrykach wytwarzano tanie tkaniny. Wśród mieszkańców miasta byli zarówno Polacy, jak i Niemcy, Żydzi i Rosjanie. W XIX-wiecznej Łodzi, wyróżniała się zwłaszcza rodzina Scheiblerów, której własnością było jedno z największych przedsiębiorstw włókienniczych w Królestwie Polskim. Wokół budynków fabryki Scheiblerowie wybudowali osiedle robotnicze. Składało się ono z jednakowych piętrowych domów z czerwonej cegły, sklepów, szpitali i ośrodka dla 250 sierot. Właściciele fabryk mieszkali w okazałych pałacach, robotnicy - w ruderach. W pogodne dni łodzianie korzystali z miejskich parków, gdzie odbywały się widowiska pod gołym niebem. W 1899 roku w Łodzi otwarto pierwsze kino, nazwane "teatrem żywych fotografii".

DYSKUSJA
Informacje
Historia i społeczeństwo 6. Wehikuł czasu
Autorzy: Tomasz Małkowski
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Wyrażenie dwumianowane

Wyrażenia dwumianowe to wyrażenia, w których występują dwie jednostki tego samego typu.

Przykłady: 5 zł 30 gr, 2 m 54 cm, 4 kg 20 dag.

Wyrażenia dwumianowe możemy zapisać w postaci ułamka dziesiętnego.

Przykład: 3 m 57 cm = 3,57 cm , bo 57 cm to 0,57 m.

Jednostki:

  • 1 cm = 10 mm; 1 mm = 0,1 cm
  • 1 dm = 10 cm; 1 cm = 0,1 dm
  • 1 m = 100 cm; 1 cm = 0,01 m
  • 1 m = 10 dm; 1 dm = 0,1 m
  • 1 km = 1000 m; 1 m = 0,001 km
  • 1 zł = 100 gr; 1 gr = 0,01 zł
  • 1 kg = 100 dag; 1 dag = 0,01 kg
  • 1 dag = 10 g; 1 g = 0,1 dag
  • 1 kg = 1000 g; 1 g = 0,001 kg
  • 1 t = 1000 kg; 1 kg = 0,001 t

Przykłady zamiany jednostek:

  • 10 zł 80 gr = 1000 gr + 80 gr = 1080 gr
  • 16 gr = 16•0,01zł = 0,16 zł
  • 1 zł 52 gr = 1,52 zł
  • 329 gr = 329•0,01zł = 3,29 zł
  • 15 kg 60 dag = 1500dag + 60dag = 1560 dag
  • 23 dag = 23•0,01kg = 0,23 kg
  • 5 kg 62 dag = 5,62 kg
  • 8 km 132 m = 8000 m+132 m = 8132 m
  • 23 cm 3 mm = 230 mm + 3 mm = 233 mm
  • 39 cm = 39•0,01m = 0,39 m
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Zobacz także
Udostępnij zadanie