Historia

Śladami przeszłości 3 (Podręcznik, Nowa Era)

Dekret o pokoju 4.67 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Historia

1. Wymień argumenty, których użyto w dokumencie, aby uzasadnić potrzebę zaprzestania działań wojennych.

  • "Dekret o pokoju" wzywał do zawieszenia broni i zawarcia pokoju bez aneksji i kontrybucji.
  • Robotnicy i chłopi byli znękani, znużeni i wyczerpani długotrwałą wojną.
  • Dokument został wydany w celu pozyskania społeczeństwa rosyjskiego, które było już zmęczone przedłużającą się i nie przynoszącą żadnych korzyści wojną.

2. Odpowiedz, do kogo skierowane było wezwanie dotyczące zakończenia wojny. 

Wezawnie dotyczące zakończenia wojny skierowane było do wszystkich państw biorących udział w zmaganiach I wojny światowej. W "Dekrecie o pokoju" czytamy: "Rząd robotniczy i chłopski, stworzony przez rewolucję 24-25 października i opierający się na Radach Robotniczych, Żołnierskich i Chłopskich, proponuje wszystkim wojującym narodom i ich rządom niezwłoczne rozpoczęcie rokowań o sprawiedliwy, demokratyczny pokój". 

DYSKUSJA
Informacje
Śladami przeszłości 3
Autorzy: Stanisław Roszak, Anna Łaszkiewicz
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Paulina

21314

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Udostępnij zadanie