Artykuły henrykowskie - Zadanie Praca z tekstem źródłowym: Śladami przeszłości 2 - strona 208
Historia
Wybierz książkę
Artykuły henrykowskie 4.63 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Historia

1. Wyjaśnij, jakie ograniczenia władzy królewskiej zostały narzucone w artykułach henrykowskich.

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy 4 szkoły podstawowej

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
komentarz do zadania undefined
Lena

21 kwietnia 2018
dzięki!!!
komentarz do zadania undefined
Alan

6 marca 2018
Dzieki za pomoc!
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Stanisław Roszak
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Paulina

74503

Nauczyciel

Wiedza
Ułamki dziesiętne i ich budowa
Ułamki dziesiętne to takie ułamki, których mianownikami są liczby 10, 100, 1000...

Przykłady:

  • $1/{10}= 0,1$
  • $2/{100}= 0,02$
  • ${15}/{100}= 0,15$
  • $3/{1000}= 0,003$
  • ${25}/{10}= 2,5$

Ułamki dziesiętne zapisujemy bez użycia kreski ułamkowej, natomiast stosujemy przecinek (zwany przecinkiem dziesiętnym), który oddziela część całkowitą od części ułamkowej.
 

rys1
 

Pierwsze miejsce po przecinku oznacza części dziesiąte, drugie - części setne, trzecie - części tysiączne, czwarte - części dziesięciotysięczne itd.

Przykład:

cyfry po przecinku
 

Powyższy ułamek możemy rozpisać:

$0,781= {700}/{1000}+{80}/{1000}+1/{1000}=7/{10}+8/{100}+1/{1000}$ -> łatwo zauważyć, że 7 to części dziesiąte, 8 części setne, a 1 to części tysięczne.

  Ciekawostka

Zapis dziesiętny liczb został opracowany w XV wieku przez perskiego matematyka Al-Kaszi, w jego dziele Miftah al-hisab (Klucz do arytmetyki). Rozpowszechnienie zawdzięczamy jednak holenderskiemu uczonemu Simonowi Stevinowi, który 1585 r. w swej pracy De Thiende (Dziesięcina) omówił istotę ułamków dziesiętnych. Notacja Stevina odbiegała od obecnie stosowanej i była dość skomplikowana, została więc szybko zmieniona. Liczby z przecinkiem błyskawicznie przyjęły się i liczbę wymierną można było wyrazić już nie tylko w postaci ułamka zwykłego. Oddzielenie przecinkiem całości od części dziesiętnych było pomysłem angielskiego matematyka. J. Nepera.

Wielokrotności

Wielokrotność liczby otrzymamy mnożąc tę liczbę przez kolejne liczby naturalne. 

Uwaga!!!

0 jest wielokrotnością każdej liczby naturalnej. 

Każda liczba naturalna jest wielokrotnością liczby 1. 


Przykłady
:

  • wielokrotności liczby 4 to: 
    • 0, bo  `0*4=0` 
    • 4, bo  `1*4=4`  
    • 8, bo  `2*4=8`  
    • 12, bo  `3*4=12`  
    • 16, bo  `4*4=16`  
    • 20, bo  `5*4=20` , itd.  
       
  • wielokrotności liczby 8 to:
    • 0, bo  `0*8=0`  
    • 8, bo  `1*8=8`  
    • 16, bo  `2*8=16`  
    • 24, bo  `3*8=24`  
    • 32, bo  `4*8=32`  
    • 40, bo  `5*8=40`, itd.  
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY3201ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA7538WIADOMOŚCI
NAPISALIŚCIE868KOMENTARZY
komentarze
... i9718razy podziękowaliście
Autorom