Planeta Nowa 7 (Podręcznik, Nowa Era )

Podaj przykład konsekwencji rozciągłości... 4.57 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Geografia
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
Informacje
Autorzy: Roman Malarz, Mariusz Szubert
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Damian

18908

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dzielniki

Dzielnik liczby to taka liczba, przez którą dana liczba jest podzielna. Dzielnikiem każdej liczby naturalnej n (n>1) jest 1 oraz ona sama.

Inaczej mówiąc, dzielnikiem liczby naturalnej  `n`  nazywamy taką liczbę naturalną  `m`, że  `n=k*m` `k`   jest liczbą naturalną. 


Przykład:

10 dzieli się przez 1, 2, 5 i 10. Wynika z tego, że dzielnikami liczby 10 są liczby 1, 2, 5 i 10.

Możemy też powiedzieć, że:

  • 1 jest dzielnikiem 10 bo  `10=10*1`   
  • 2 jest dzielnikiem 10 bo  `10=5*2`  
  • 5 jest dzielnikiem 10 bo  `10=2*5`  
  • 10 jest dzielnikiem 10 bo  `10=1*10`  


Uwaga!!! 

Jeżeli liczba naturalna `m`  jest dzielnikiem liczby `n` , to liczba `n`  jest wielokrotnością liczby `m` .

Przykład:

Liczba 2 jest dzielnikiem liczby 10, czyli liczba 10 jest wielokrotnością liczby 2.


Dowolną liczbę naturalną n większą od 1 (n>1), która ma tylko dwa dzielniki, 1 oraz samą siebie, nazywamy liczbą pierwszą.

Liczbami pierwszymi są liczby: 2, 3, 5, 7, 11, 13, 17, 19, 23...

Liczbę naturalną n (n>1) niebędącą liczbą pierwszą, czyli posiadającą więcej niż dwa dzielniki, nazywamy liczbą złożoną.

Liczbami złożonymi są: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18...


Zapamiętaj!!!

Liczby 0 i 1 nie są ani liczbami pierwszymi ani złożonymi. 

 
Zamiana ułamka dziesiętnego na zwykły

Licznikiem ułamka zwykłego jest liczba naturalna jaką utworzyłyby cyfry ułamka dziesiętnego, gdyby nie było przecinka, mianownikiem jest liczba zbudowana z cyfry 1 i tylu zer, ile cyfr po przecinku zawiera ułamek dziesiętny.

Przykłady:

  • $$0,25 = {25}/{100}$$ ← licznikiem ułamka zwykłego jest liczba 25 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z dwóch zer, czyli liczba 100, ponieważ dwie cyfry stoją po przecinku,

  • $$4,305={4305}/{1000}$$ ← licznikiem ułamka zwykłego jest liczba 4305 (ponieważ taką liczbę tworzą cyfry ułamka dziesiętnego bez przecinka), mianownikiem ułamka zwykłego jest liczba zbudowana z 1 oraz z trzech zer, czyli liczba 1000, ponieważ trzy cyfry stoją po przecinku.

Zobacz także
Udostępnij zadanie