Oceń prawdziwość każdego... - Zadanie 3: Po prostu Geografia. Zakres podstawowy - strona 78
Geografia
Po prostu Geografia. Zakres podstawowy (Zeszyt ćwiczeń, WSiP)
Oceń prawdziwość każdego... 4.5 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 1 Klasa
  3. Geografia

Oceń prawdziwość każdego...

3
 Zadanie

4
 Zadanie
5
 Zadanie

I. F (nie w każdym rezerwacie przyrody);

II. F;

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy I liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
I liceum
Informacje
Autorzy: Marian Kupczyk, Zespół ODE
Wydawnictwo: WSiP
Rok wydania:
ISBN: 9788302128868
Autor rozwiązania
user profile

Damian

33858

Nauczyciel

Wiedza
Twierdzenie odwrotne do twierdzenia Pitagorasa

Znając długości trzech boków trójkąta jesteśmy w stanie stwierdzić czy jest on prostokątny.

Wystarczy sprawdzić czy suma kwadratów długości dwóch krótszych boków jest równa kwadratowi długości najdłuższego boku.

Takie twierdzenie nazywamy twierdzeniem odwrotnym do twierdzenia Pitagorasa.

Twierdzenie odwrotne do twierdzenia Pitagorasa:

Jeśli w trójkącie suma kwadratów długości dwóch krótszych boków jest równa kwadratowi długości najdłuższego boku, to trójkąt jest prostokątny.

Wyłączanie wspólnego czynnika przed nawias

Mnożenie jednomianów i sum algebraicznych prowadziło do powstania sumy algebraicznej.

Czasami warto wykonać odwrotną operację czyli zamienić sumę algebraiczną na iloczyn jednomianu i krótszej sumy algebraicznej. Taką operację nazywamy wyłączaniem czynnika przed nawias.


Jak to zrobić? 

Mamy sumę:  `8xy+2x+9kx+17x` 

  1. Z każdego wyrazu sumy wybieramy powtarzający się element. W podanym przykładzie będzie to: `x` . 

    `8ul(x)y+2ul(x)+9kul(x)+17ul(x)`  

  2. Wyciągamy powtarzający się element przed nawias tak, by po pomnożeniu otrzymać początkową sumę algebraiczną.
    Z pozostałych elementów każdego jednomianu tworzymy sumę algebraiczną. 

    `x(8y+2+9k+17)`  


Przykłady:

  • `9x-3y+18k=ul(3)*3x+ul(3)*(-y)+ul(3)*6k=ul(3)(3x-y+6k)`  

  • `5kl+10xk-20qk=ul(5k)*l+ul(5k)*2x+ul(5k)*(-4q)=ul(5k)(l+2x-4q)`  
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom