Fizyka 7 (Zeszyt ćwiczeń, Operon)

Balon musi się wznieść na pewną wysokość... 4.67 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Fizyka

Balon musi się wznieść na pewną wysokość...

1
 Zadanie

2
 Zadanie

3
 Zadanie

Na balon działa skierowana pionowo w górę siła wyporu oraz pionowo w dół siła ciężkości (ciężar balonu). Podczas wznoszenia się siła wyporu musi być większa niż ciężar balonu, natomiast podczas przesuwania się siły te muszą być równe, a podczas opadania ciężar musi być większy. Siła wyporu działająca na balon jest stała (balon w całości znajduje się w powietrzu). Zmieniane są natomiast wartości ciężaru balonu. 

DYSKUSJA
Informacje
Autorzy: Roman Grzybowski
Wydawnictwo: Operon
Rok wydania:
Autor rozwiązania
user profile image

Ola

11650

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Zobacz także
Udostępnij zadanie