Ile razy wzrośnie droga hamowania... - Zadanie 2: Fizyka 4 - strona 16
Fizyka
Fizyka 4 (Podręcznik, GWO)
Ile razy wzrośnie droga hamowania... 4.33 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Fizyka

Ile razy wzrośnie droga hamowania...

1
 Zadanie

2
 Zadanie

Zadanie premium

Rozwiązanie tego zadania jest widoczne tylko dla użytkowników Premium dla klasy III gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
III gimnazjum
Informacje
Autorzy: Krzysztof Horodecki, Artur Ludwikowski
Wydawnictwo: GWO
Rok wydania:
ISBN: 9788374202480
Autor rozwiązania
user profile

Ola

19823

Nauczyciel

Wiedza
Największy wspólny dzielnik

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Największy wspólny dzielnik dwóch liczb naturalnych a i b oznaczamy symbolem NWD (a, b).

W celu wyznaczenia największego wspólnego dzielnika dwóch liczb wykorzystujemy rozkład tych liczb na czynniki pierwsze. Następnie w rozkładach na czynniki pierwsze wybieramy w te liczby, które jednocześnie występują i w jednym i w drugim rozkładzie. Iloczyn tych liczb jest największym wspólnym dzielnikiem.

W powyższych rozkładach wybieramy liczby, które jednocześnie występują zarówno w jednym, jak i w drugim rozkładzie – zaznaczono je kolorem czerwonym. Największy wspólny dzielnik jest iloczynem tych liczb.

Przykład:
Wyznaczmy największy wspólny dzielnik liczb 1848 i 180. Zaczynamy od rozłożenia tych liczb na czynniki pierwsze:

nwd
 

W powyższych rozkładach wybieramy liczby, które jednocześnie występują i w jednym i w drugim rozkładzie – w powyższych rozkładach zaznaczono je kolorem czerwonym. Największy wspólny dzielnik jest iloczynem tych liczb.

$NWD(1848,180)=2•2•3=12$
Odejmowanie liczb całkowitych

Każde odejmowanie liczb całkowitych można zastąpić odpowiednim dodawaniem.

Przykłady:

  • $3 − (−9) = 3 + 9 = 12$
  • $(−4) − 5 = (-4) + (-5) = −9$
  • $(−8) − (−11) = (−8) + 11 = 11 + (−8) = 11 − 8 = 3$
     

Reguły odnoszące się do znaków + i -:

  • $(+a) = +a = a$
  • $- (-a) = +a = a$
  • $- (+a) = -a$
  • $+ (-a) = -a$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom