Jak powstały termometry?... - Zadanie Ćwiczenie: Fizyka 2 - strona 32
Fizyka
Fizyka 2 (Zeszyt ćwiczeń, GWO)
Jak powstały termometry?... 4.67 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Fizyka

Jak powstały termometry?...

Ćwiczenie
 Zadanie

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy II gimnazjum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
II gimnazjum
Informacje
Autorzy: Krzysztof Horodecki i Artur Ludwikowski
Wydawnictwo: GWO
Rok wydania:
Autor rozwiązania
user profile

Ola

19835

Nauczyciel

Wiedza
Okrąg wpisany w czworokąt
W przypadku okręgów wpisanych w czoworkąty warunek zależy od długości odpowiednich boków: musi zachodzić:
$AB + CD = BC + AD$

2

Dlaczego? Jeśli poprowadzimy cztery promienie (tak jak na rysunku) - przekonamy się, że zaznaczone trójkąty są podobne, więc sumując odpowiednie odcinki otrzymjemy:

$AW + CD = AW + WB + CY + YD = AZ + BX + CX + DZ = BC + AD$

 
Pochodne funkcji wymiernych
Oczywiście obliczanie pochodnej każdej funkcji z definicji byłoby dość kłopotliwe. Tak jak przy okazji granic, tak tutaj też istnieją wzory określające pochodną sumy, różnicy, iloczynu i ilorazu, z których zwykle korzysta się przy obliczaniu pochodnych.

Pochodna sumy i różnicy jest po prostu sumą i różnicą pochodnych - nie ma w tym nic skomplikowanego. Trudniej zaczyna się robić, gdy mamy do czynienia z iloczynem albo ilorazem funkcji.

Suma: $(f(x) + g(x))' = f'(x) + g'(x)$

Różnica: $(f(x) - g(x))' = f'(x) - g'(x)$

Iloczyn: $(f(x)×g(x))' = f'(x)×g(x) + g'(x)×f(x)$

Iloraz: $({f(x)}/{g(x)})' = {f'(x)×g(x) + g'(x)×f(x)}/{(g(x))^2}$


Warto także znać wzór na pochodną funkcji złożonej: $(f(g(x)))' = f'(g(x))g'(x)$.

Oczywiście funkcja stała ma pochodną równą 0 - w ogóle nie rośnie.

Ponadto trzeba zapamiętać pochodną funkcji potęgowej:
$(x^n)' = nx^{n-1}$

Tylko to i powyższe cztery wzory pozwalają nam obliczyć pochodną dowolnej funkcji wymiernej.

Przykład: Obliczyć pochodną

$f(x) = x^4 + 3x - 1$

1) Jest to suma funkcji potęgowych, więc możemy skorzystać z tego, że pochodna sumy jest równa sumie pochodnych:
$(x^4 + 3x - 1)' = (x^4)' + (3x)' - (1)'$

2) Teraz pozostaje tylko obliczyć każdy ze składników korzystając ze wzoru na pochodną funkcji potęgowej:
$f'(x) = 4x^3 + 12 - 0$

Weźmy inną funkcję, tym razem bardziej skomplikowaną:
$f(x) = {(x-1)(x-2)}/{x^2 - 1}$

1) Na początek rozłóżmy mianownik na iloczyn ze wzoru skróconego mnożenia i skróćmy ułamek:
$f(x) = {(x-1)(x-2)}/{(x-1)(x+1)}$
$f(x) = {x-2}/{x+1}$

2) Dostaliśmy prostą funkcję wymierną: korzystając ze wzoru na pochodną ilorazu dostajemy:
$f'(x) = {(x-2)'(x+1) + (x-2)(x+1)'}/{(x+1)^2}$

3) Pochodną funkcji liniowej jest oczywiście 1, więc w wyniku dostajemy:
$f'(x) = {x+1+x-2}/{(x+1)^2}$
$f'(x) = {2x-1}/{(x+1)^2}$


Trzeci przykład - obliczanie pochodnej funkcji złożonej.

Weźmy funkcję $f(x) = √{x^2 + x} = (x^2 + x)^{ {1}/{2} }$.

Oznaczmy sobie $g(x) = √{x} = x^{ {1}/{2} }$ oraz $h(x) = x^2 + x$. Wtedy funkcja $f(x)$ jest po prostu złożeniem dwóch funkcji $g(h(x))$.

Jej pochodna jest w takim razie równa $f'(x) = {1}/{2}(x^2+x)^{ {1}/{2}-1}×(x^2 + x)' = {1}/{2}(x^2+x)^{ -{1}/{2} }×(2x + 1)$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom