Fizyka. Zbiór zadań. Klasy 1-3 (Zbiór zadań, WSiP)

Rysunek 6.19 przedstawia wykres zależności... 4.0 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Fizyka

Rysunek 6.19 przedstawia wykres zależności...

6.68
 Zadanie
6.69
 Zadanie

6.70
 Zadanie

6.71
 Zadanie

1) czas rozpędzania:
`"t"_1=3\ "min"=3*60\ "s"=180\ "s"`  

czas hamowania:
`"t"_2=20\ "min"-18\ "min"=2\ "min"=2*60\ "s"=120\ "s"`  

2) Największa prędkość wynosi:

`"v"_"max"=10\ "m"/"s"=10*(0,001\ "km")/(1/3600\ "h")=36\ "km"/"h"`  

3) wartość przyspieszenia przy rozpędzaniu wynosi:

`"a"_1="v"/"t"_1=(10\ "m"/"s")/(180\ "s")`   

`"a"_1~~0,05\ "m"/"s"^2` 

    wartość przyspieszenia przy hamowaniu wynosi:

`"a"_2="v"/"t"_2=(10\ "m"/"s")/(120\ "s")` 

`"a"_2~~0,08\ "m"/"s"^2`  

DYSKUSJA
Informacje
Fizyka. Zbiór zadań. Klasy 1-3
Autorzy: Romuald Subieta
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Ola

5756

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Kwadrat

Kwadrat to prostokąt, który ma wszystkie boki jednakowej długości.

Przekątne kwadratu są prostopadłe, mają równą długość i wspólny środek. Przekątne tworzą z bokami kwadratu kąt 45°.

Długość jednego boku jest wymiarem kwadratu.

kwadrat
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Zobacz także
Udostępnij zadanie