W ramach projektu edukacyjnego.. 4.2 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Fizyka

W ramach projektu edukacyjnego..

7
 Zadanie

8
 Zadanie

`d_"piłki"=22,4\ cm=22,4*10^-2\ m`

`d_"saturna"=116 464\ km=116 464*10^3\ m`

`"pomniejszenie"=(22,4*10^-2\ m)/(116464*10^3\ m)=2*10^-9`

`d_x=(d_"użytej piłki szukanej planety")/(pomniejszenie)=(9,5*10^-2\ m)/(2*10^-9)~~5*10^7\ m=50000\ km`    ` `   

 

Średnicę 50 000 km ma URAN.

        

DYSKUSJA
Informacje
Odkryć fizykę. Karty pracy ucznia. Zakres podstawowy
Autorzy: Marcin Braun, Weronika Śliwa, Bartłomiej Piotrowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Ola

3418

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Kąty

Kąt to część płaszczyzny ograniczona dwiema półprostymi o wspólnym początku, wraz z tymi półprostymi.

Półproste nazywamy ramionami kąta, a ich początek – wierzchołkiem kąta.

kat-glowne
 


Rodzaje kątów:

  1. Kąt prosty – kąt, którego ramiona są do siebie prostopadłe – jego miara stopniowa to 90°.

    kąt prosty
  2. Kąt półpełny – kąt, którego ramiona tworzą prostą – jego miara stopniowa to 180°.
     

    kąt pólpelny
     
  3. Kąt ostry – kąt mniejszy od kąta prostego – jego miara stopniowa jest mniejsza od 90°.
     

    kąt ostry
     
  4. Kąt rozwarty - kąt większy od kąta prostego i mniejszy od kąta półpełnego – jego miara stopniowa jest większa od 90o i mniejsza od 180°.

    kąt rozwarty
  5. Kąt pełny – kąt, którego ramiona pokrywają się, inaczej mówiąc jedno ramię tego kąta po wykonaniu całego obrotu dookoła punktu O pokryje się z drugim ramieniem – jego miara stopniowa to 360°.
     

    kat-pelny
     
  6. Kąt zerowy – kąt o pokrywających się ramionach i pustym wnętrzu – jego miara stopniowa to 0°.

    kat-zerowy
 
Dodawanie ułamków dziesiętnych

Dodawanie ułamków dziesiętnych sposobem pisemnym jest bardzo podobne do dodawania liczb naturalnych:

  1. Ułamki podpisujemy tak, aby przecinek znajdował się pod przecinkiem ( cyfra jedności pod cyfrą jedności, cyfra dziesiątek pod cyfrą dziesiątek, cyfra setek pod cyfrą setek itd.);
  2. W miejsce brakujących cyfr po przecinku można dopisać zera;
  3. Ułamki dodajemy tak jak liczby naturalne, czyli działania prowadzimy od kolumny prawej do lewej i wykonujemy je tak, jak gdyby nie było przecinka;
  4. W uzyskanym wyniku stawiamy przecinek tak, aby znajdował się pod napisanymi już przecinkami.

Przykład:

  • $$ 1,57+7,6=?$$
    dodawanie-ulamkow-1 

    $$1,57+7,6=8,17 $$

Zobacz także
Udostępnij zadanie