Wykonaj potrzebne obliczenia... 4.53 gwiazdek na podstawie 15 opinii
  1. Liceum
  2. 1 Klasa
  3. Fizyka

Wykonaj potrzebne obliczenia...

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie

a)

 

 

 

 

Ziemia przyciąga tego satelitę siłą ok. 23N

b)

 

 

 

 

Gdy satelita znajdował się na powierzchni Ziemi, to znajdował się on 6000km od jądra Ziemi. Działała wtedy na niego siłą przyciągania równa 1116,6N

 

 

 

 

 

 

 

DYSKUSJA
user avatar
Gość

6 grudnia 2017
Potrzebuję jeszcze zadania 3 i 4
user avatar
Odrabiamy.pl

906

6 grudnia 2017

@Gość Cześć, te zadania są dostępne dla użytkowników premium. Aby je zobaczyć, należy wykupić konto premium tutaj:

Autorzy: Marcin Braun, Weronika Śliwa
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326724893
Autor rozwiązania
user profile

Ania

24561

Nauczyciel

Wiedza
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom