Świat fizyki 1A (Zeszyt ćwiczeń, ZamKor)

Przy wjeździe na most kierowca samochodu 4.5 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Fizyka

Przy wjeździe na most kierowca samochodu

5
 Zadanie
6
 Zadanie

7
 Zadanie

`2340kg=2,34 t`

`2,34t<2,5t`

Znak oznacza zakaz wjazdu samochodom ważącym powyżej 2,5 tony. Samochód może wjechać na most, ponieważ jego masa jest mniejsza niż 2,5 tony.

DYSKUSJA
Informacje
Świat fizyki 1A
Autorzy: Maria Rozenbajgier, Ryszard Rozenbajgier, Małgorzata Godlewska, Danuta Szot-Gawlik
Wydawnictwo: ZamKor
Rok wydania:
Autor rozwiązania
user profile image

Monika

6836

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Wyłączenie całości z ułamka niewłaściwego

Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” z liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).

Przykład: $$9/4 = 2 1/4$$

Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą).

Zobacz także
Udostępnij zadanie