Uczeń przebywa w szkole przez 6 godzin 4.56 gwiazdek na podstawie 9 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Fizyka

Uczeń przebywa w szkole przez 6 godzin

3
 Zadanie

4
 Zadanie

Dane:

ilość lekcji-6

czas lekcji- 45 min

ilość przerw krótkich- 4

czas przerw krótkich- 10min

ilość przerw długich- 1

czas przerwy długiej- 20min

Szukane:

godzina zakończenia lekcji

Rozwiązanie:

Obliczmy łączny czas wszystkich 6 lekcji:

`6*45 min=270 \ min= 4 \ h \ 30 \ min`

Obliczmy łączny czas wszystkich przerw:

`4*10 \ min+20 \ min=40 \ min+20 \ min=60 \ min=1 \ h`

Łączny czas spędzony w szkole:

`4 \ h \ 30 \ min +1 \ h = 5 \ h \ 30 \ min`

`8^(00)+ 5 \ h \ 30 \ min= 13^(30)`

 

 

Odpowiedź:Uczeń skończy lekcje o 13:30.
DYSKUSJA
Informacje
Świat fizyki 1A
Autorzy: Maria Rozenbajgier, Ryszard Rozenbajgier, Małgorzata Godlewska, Danuta Szot-Gawlik
Wydawnictwo: ZamKor
Rok wydania:
Autor rozwiązania
user profile image

Monika

3549

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $$1 mm^2$$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $$1 mm^2$$
  • $$1 cm^2$$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $$cm^2$$
  • $$1 dm^2$$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $$1 dm^2$$
  • $$1 m^2 $$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $$1 m^2$$
  • $$1 km^2$$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $$1 km^2$$
  • $$1 a$$ (ar) → pole kwadratu o boku 10 m jest równe 100 $$m^2$$
  • $$1 ha$$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $$m^2$$

Zależności między jednostkami pola:

  • $$1 cm^2 = 100 mm$$; $$1 mm^2 = 0,01 cm^2$$
  • $$1 dm^2 = 100 cm^2 = 10 000 mm^2$$; $$1 cm^2 = 0,01 dm^2$$
  • $$1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$$; $$1 dm^2 = 0,01 m^2$$
  • $$1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$$; $$1 ha = 0,01 km^2$$
  • $$1 a = 100 m^2$$; $$1 m^2 = 0,01 a$$
  • $$1 ha = 100 a = 10 000 m^2$$; $$1 a = 0,01 ha$$

Przykłady wyprowadzania powyższych zależności:

  • $$1 cm^2 = 10mm•10mm=100$$ $$mm^2$$
  • $$1 cm^2 = 0,1dm•0,1dm=0,01$$ $$dm^2$$
  • $$1 km^2 = 1000m•1000m=1000000$$ $$m^2$$
Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Zobacz także
Udostępnij zadanie