Do kubeczka o masie 200 g znajdującego 4.53 gwiazdek na podstawie 15 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Fizyka

Dane:

Kubek:

Woda:

Szukane:

Rozwiązanie:

Aby rozwiązać ten problem w pierwszej kolejności należy obliczyć ile energii dostarcza dana ilość podgrzanego wrzątku.

Teraz obliczamy, jak ta ilość ciepła wpłynęła na temperaturę kubeczka ( obliczamy przyrost ciepła) i przekształcamy wzór na ciepło tak, aby wyliczyć ciepło właściwe metalu, z którego był zrobiony kubek.

Z tabeli na stronie 145 odczytujemy, że wyliczone ciepło właściwe jest najbardziej zbliżone do ciepła właściwego glinu. Można więc przypuszczać, że kubeczek został wykonany ze stopu glinu z niewielką ilością innych metali, czyli został wykonany z aluminium.

Odpowiedź:

Kubeczek jest wykonany z aluminium.

DYSKUSJA
user avatar
Alan

27 stycznia 2018
dzieki!
user avatar
Nina

16 stycznia 2018
Dzieki za pomoc!
klasa:
Informacje
Autorzy: Grażyna Francuz-Ornat, Teresa Kulawik, Maria Nowotny-Różańsk
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Monika

23753

Nauczyciel

Wiedza
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Wyłączenie całości z ułamka niewłaściwego

Jeśli ułamek jest niewłaściwy (czyli jego mianownik jest równy lub mniejszy od licznika) to możemy wyłączyć z niego całość, tzn. dzielimy (być może zresztą) licznik przez mianownik (tzn. sprawdzamy ile razy mianownik „zmieści się” w liczniku) i otrzymujemy w ten sposób liczbę naturalną, będącą całością (tzw. składnik całkowity) oraz resztę, która jest ułamkiem właściwym (tzw. składnik ułamkowy).

Przykład: `9/4=2\1/4` 

Opis powyższego przykładu: Dzielimy 9 przez 4, czyli sprawdzamy ile razy 4 zmieści się w 9. Liczba 4 zmieści się 2 razy w liczbie 9, czyli otrzymujemy 2 i resztę 1 (bo $$2•4= 8$$, czyli do 9 brakuje 1, i ona jest naszą resztą). 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom