Oblicz... - Zadanie 6: Elementarz XXI wieku. Ćwiczenia edukacja matematyczna cz. 1 - strona 19
Edukacja wczesnoszkolna
Elementarz XXI wieku. Ćwiczenia edukacja matematyczna cz. 1 (Zeszyt ćwiczeń, Nowa Era)
Oblicz... 4.33 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 3 Klasa
  3. Edukacja wczesnoszkolna

Obliczamy:

 

 

 

 

   

   

   

                    

DYSKUSJA
klasa:
3 szkoły podstawowej
Informacje
Autorzy: Krysytna Bielenicka, Maria Bura
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326726668
Autor rozwiązania
user profile

Ola

19831

Nauczyciel

Wiedza
Tworzenie wykresów
x 0 1
y 3 2

Tabelka x/y oznacza dwa punkty przez które będzie przechodzić funkcja liniowa.

Mamy punkty:

A(0;3)

B(1;2)
 

Kolejnym krokiem jest zaznaczenie ich na układzie współrzędnych i połączenie linią.

wykres1

Przejdźmy teraz do drugiej tabelki.

x 0 1
y -3 -1

Ponownie odczytujemy punkty i łączymy je linią:

C(0;-3)

D(1;-1)

wykres2

Teraz musimy nałożyć oba wykresy na siebie. Miejsce przecięcia obu prostych to rozwiązanie.

wykes-koncowy

Linie przecięły się punkcie o współrzędnych (2,1), z tego wynika, że $x=2$, $y=1$.

Uwaga!

  • Istnieją specjalne układy równań:
    - Tożsamościowe: Wykresy się pokrywają,
    - Sprzeczne: Wykresy się nigdy nie przetną.
  • Wynik metody graficznej możemy sprawdzić algebraicznie, czyli metodami przeciwnych współczynników lub podstawiania.
  • Jeśli wykresy nie są równoległe to znaczy, że zawsze gdzieś się przetną!
 
Przesunięcie o wektor

Przesunięcie o wektor to transformacja polegając na przesunięciu wykresu funkcji o ileś pól po osi X (w lewo lub w prawo) i po osi Y (w górę lub w dół).

Oznaczmy sobie funkcję bazową jako $f(x)$ i zawsze transformujmy wg tego wzoru:
$f(x-a)+b$

gdzie a to ilość pól wzdłuż osi x, a b ilość pól wzdłuż osi y. Oznacza to przesunięcie o wektor [a;b].

Załóżmy, że będziemy przesuwać zawsze o 5 pól, co daje wzory:

O pięć pól w górę: $f(x)+5$

O pięć pól w dół: $f(x)-5$

O pięć pól w lewo: $f(x+5)$

O pięć pól w prawo: $f(x-5)$

Możemy też przesuwać jednocześnie

O pięć pól w lewo i o pięć pól w dół: $f(x+5)-5$

Jak to wygląda na rysunku?

Spójrz na wykres:

wyk1

Przesuńmy go o 3 w górę:

Wtedy musimy wszystkie punkty zgięcia przesunąć o 3 w górę a potem połączyć, tak jak zostało to przedstawione na rysunku:

wyk2

Teraz nasz wzór to $f(x)+3$ Tak samo możemy zrobić z X i Y równocześnie, przesuńmy wykres bazowy (o wzorze $f(x)$):

wyk1

O wektor $[-2;-1]$

Nie boimy się słowa wektor, po prostu o 2 w lewo, bo -2 powoduje, że odejmujemy od współrzędnej X dwa pola, a -1 w dół, bo odejmujemy jedno pole od Y.

Znów po punktach:

wyk3
Wzór takiego nowego wykresu to $f(x+2)-1$.
 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom