Przeczytaj uważnie zdania... 4.17 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 3 Klasa
  3. Edukacja wczesnoszkolna

Przeczytaj uważnie zdania...

1
 Zadanie

Podpisujemy kolejne zdjęcia:

  • Odpowiadamy na pytania.

Co lubi robić Kinga?

Kinga lubi oglądać filmy.

Z kim przyjaźni się Jasiek?

Jasiek przyjaźni się z Wiktorem.

Czym wspólnie zajmują się chłopcy?

Chłopcy wspólnie sklejają modele samolotów.

  • Wiktor hoduje chomika, królika i papugę:

DYSKUSJA
klasa:
Informacje
Autorzy: Ewa Hryszkiewicz, Małgorzata Ogrodowczyk, Barbara Stępień, Joanna Winiecka-Nowak
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326726644
Autor rozwiązania
user profile

Ola

16174

Nauczyciel

Wiedza
Najmniejsza wspólna wielokrotność (NWW)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest 15.
    1. Wypiszmy wielokrotności liczby 3 (różne od 0): 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...
    2. Wypiszmy wielokrotności liczby 5 (różne od 0): 5, 10, 15, 20, 25, 30, 35, ...
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.

  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest 12.
    1. Wypiszmy wielokrotności liczby 4 (różne od 0): 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
    2. Wypiszmy wielokrotności liczby 6 (różne od 0): 6, 12, 18, 24, 30, 36, 42, 48, ...
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6. Jest to 12.


Najmniejszą wspólną wielokrotność dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWW dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn czynników pierwszej liczby oraz niezaznaczonych czynników drugiej liczby. 

Przykład:

Kolejność wykonywania działań

Przy rozwiązywaniu działań najważniejsze jest zachowanie odpowiedniej kolejności wykonywania działań.


Kolejność wykonywania działań:

  1. Działania w nawiasach

  2. Potęgowanie

  3. Mnożenie i dzielenie (jeżeli w działaniu występuje zarówno dzielenie jak i mnożenie, to działania wykonujemy w kolejności w jakiej są zapisane, czyli od lewej do prawej strony).
    Przykład`16:2*5=8*5=40` 

  4. Dodawanie i odejmowanie (jeżeli w działaniu występuje zarówno odejmowanie jak i dodawanie, to działania wykonujemy w kolejności w jakiej są zapisane, czyli od lewej strony do prawej).
    Przykład`24-6+2=18+2=20` 


Przykład:

`(45-9*3)-4=(45-27)-4=18-4=14` 

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom