Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Moje ćwiczenia. Domowniczek cz. 3 (Zeszyt ćwiczeń, MAC)

Przeczytaj rymowankę i uzupełnij... 4.83 gwiazdek na podstawie 6 opinii
  1. Szkoła podstawowa
  2. 3 Klasa
  3. Edukacja wczesnoszkolna

Przeczytaj rymowankę i uzupełnij...

2
 Zadanie

Ile zwierząt jest na obydwu drzewach?

Na pierwszym drzewie są dwa wróbelki, siedem wron i jeden szpak. Na drugim drzewie są cztery wiewiórki. Łącznie jest:

`2+7+1+4=14`  

Łącznie jest 14 zwierząt.

 

Ile nóg mają razem ptaki wymienione w rymowance?

W rymowance wymienionych jest 10 ptaków. Każdy z nich ma dwie nogi. A więc łącznie mają:

`10*2=20` 

Łącznie ptaki mają 20 nóg.

 

Ile nóg mają razem zwierzęta wymienione w rymowance?

W rymowance wymienionych jest 14 zwierzątek - 10 ptaszków i 4 wiewiórki. Obliczmy ile nóżek mają ptaszki:

`10*2=20` 

Ptaszki mają 20 nóżek. Obliczmy, ile nóżek mają wiewiórki:

`4*2=8` 

Obliczmy ile łącznie nóżek mają zwierzątka:

`20+8=28` 

Łącznie zwierzątka mają 28 nóżek.

 

O ile więcej nóg mają ptaki niż ssaki?

Ptaki mają łącznie 20 nóg. Ssakami w rymowance są wiewiórki, które mają łącznie 8 nóg. Obliczmy o ile więcej nóg mają ptaki niż ssaki:

`20-8=12` 

Ptaki mają o 12 nóg więcej niż ssaki.

 

Ile dziobów mają wszystkie zwierzęta?

Spośród wymienionych zwierząt tylko ptaki mają dzioby - każdy ptak ma jeden dziób. Skoro jest 10 ptaków, to łącznie jest też 10 dziobów.

 

Ile oczu mają razem wszystkie zwierzęta?

Każde zwierzątko - ptak i wiewiórka - mają po 2 oczu. Mamy 10 ptaszków i 4 wiewiórki, a więc:

`10*2=20` 

Ptaki mają 20 oczu.

`4*2=8` 

Wiewiórki mają 8 oczu. Razem zwierzęta mają:

`20+8=28` 

Razem zwierzęta mają 28 oczu.     

DYSKUSJA
Informacje
Autorzy: Jolanta Faliszewska, Grażyna Lech
Wydawnictwo: MAC
Rok wydania:
Autor rozwiązania
user profile

Ania

22387

Nauczyciel

Wiedza
Wyrażenie dwumianowane

Wyrażenia dwumianowe to wyrażenia, w których występują dwie jednostki tego samego typu.

Przykłady: 5 zł 30 gr, 2 m 54 cm, 4 kg 20 dag.

Wyrażenia dwumianowe możemy zapisać w postaci ułamka dziesiętnego.

Przykład: 3 m 57 cm = 3,57 cm , bo 57 cm to 0,57 m.

Jednostki:

  • 1 cm = 10 mm; 1 mm = 0,1 cm
  • 1 dm = 10 cm; 1 cm = 0,1 dm
  • 1 m = 100 cm; 1 cm = 0,01 m
  • 1 m = 10 dm; 1 dm = 0,1 m
  • 1 km = 1000 m; 1 m = 0,001 km
  • 1 zł = 100 gr; 1 gr = 0,01 zł
  • 1 kg = 100 dag; 1 dag = 0,01 kg
  • 1 dag = 10 g; 1 g = 0,1 dag
  • 1 kg = 1000 g; 1 g = 0,001 kg
  • 1 t = 1000 kg; 1 kg = 0,001 t

Przykłady zamiany jednostek:

  • 10 zł 80 gr = 1000 gr + 80 gr = 1080 gr
  • 16 gr = 16•0,01zł = 0,16 zł
  • 1 zł 52 gr = 1,52 zł
  • 329 gr = 329•0,01zł = 3,29 zł
  • 15 kg 60 dag = 1500dag + 60dag = 1560 dag
  • 23 dag = 23•0,01kg = 0,23 kg
  • 5 kg 62 dag = 5,62 kg
  • 8 km 132 m = 8000 m+132 m = 8132 m
  • 23 cm 3 mm = 230 mm + 3 mm = 233 mm
  • 39 cm = 39•0,01m = 0,39 m
Jednostki pola

Jednostki pola służą do określenia pola danej figury, mówią nam ile maksymalnie kwadratów jednostkowych mieści się wewnątrz danej figury.

Jednostką pola może być dowolny kwadrat, jednak najczęściej używane są poniżej przedstawione jednostki pola, które ułatwiają przekazywanie informacji o polach figur:

  • $$1 mm^2$$ (milimetr kwadratowy) → pole kwadratu o boku 1 mm jest równe $$1 mm^2$$
  • $$1 cm^2$$ (centymetr kwadratowy) → pole kwadratu o boku 1 cm jest równe 1 $$cm^2$$
  • $$1 dm^2$$ (decymetr kwadratowy) → pole kwadratu o boku 1 dm jest równe $$1 dm^2$$
  • $$1 m^2 $$(metr kwadratowy) → pole kwadratu o boku 1 m jest równe $$1 m^2$$
  • $$1 km^2$$ (kilometr kwadratowy) → pole kwadratu o boku 1 km jest równe $$1 km^2$$
  • $$1 a$$ (ar) → pole kwadratu o boku 10 m jest równe 100 $$m^2$$
  • $$1 ha$$ (hektar) → pole kwadratu o boku 100 m jest równe 10000 $$m^2$$

Zależności między jednostkami pola:

  • $$1 cm^2 = 100 mm$$; $$1 mm^2 = 0,01 cm^2$$
  • $$1 dm^2 = 100 cm^2 = 10 000 mm^2$$; $$1 cm^2 = 0,01 dm^2$$
  • $$1 m^2 = 100 dm^2 = 10 000 cm^2 = 1 000 000 mm^2$$; $$1 dm^2 = 0,01 m^2$$
  • $$1 km^2 = 1 000 000 m^2 = 10 000 a = 100 ha$$; $$1 ha = 0,01 km^2$$
  • $$1 a = 100 m^2$$; $$1 m^2 = 0,01 a$$
  • $$1 ha = 100 a = 10 000 m^2$$; $$1 a = 0,01 ha$$

Przykłady wyprowadzania powyższych zależności:

  • $$1 cm^2 = 10mm•10mm=100$$ $$mm^2$$
  • $$1 cm^2 = 0,1dm•0,1dm=0,01$$ $$dm^2$$
  • $$1 km^2 = 1000m•1000m=1000000$$ $$m^2$$
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom