Poliester należy do grupy... - Zadanie 956: Chemia 3. Zbiór zadań maturalnych wraz z odpowiedziami 2002-2018 - strona 330
Chemia
Chemia 3. Zbiór zadań maturalnych wraz z odpowiedziami 2002-2018 (Zbiór zadań, Oficyna Wydawnicza Nowa Matura)
Poliester należy do grupy... 4.29 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Chemia

Poliester należy do grupy...

955
 Zadanie

956
 Zadanie

Wzór półstrukturalny elany:

 

DYSKUSJA
klasa:
I liceum
Informacje
Autorzy: Dariusz Witowski, Jan Sylwester Witowski
Wydawnictwo: Oficyna Wydawnicza Nowa Matura
Rok wydania:
ISBN: 9788393407309
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Prawdopodobieństwo całkowite

Twierdzenie o prawdopodobieństwie całkowitym to sposób na obliczanie sytuacji, które mogą zdarzać się na różne sposoby. Wróćmy do poprzedniego zadania: taki sam rozkład kul w urnach parzystych i nieparzystych, jednak tym razem pytamy, jakie jest w ogóle prawdopodobieństwo wyciągnięcia zielonej kuli.

Do obliczenia tego posłuży nam wzór:

$P(A) = sum_{i = 1}^{n} P(A|H_i)P(H_i)$

Mówi on tyle, że jeśli jest $n$ sposobów zajścia zdarzenia i każdy sposób ma prawdopodobieństwo zajścia $P(H_i)$, to prawdopodobieństwo zajścia zdarzenia jest równe sumie prawdopodobieństw warunkowch przemnożonych przez prawdopodobieństwa sposobów.

Stosując wzór na prawdopodobieństwo warunkowe możemy przekształcić równanie otrzymując:

$P(A) = sum_{i = 1}^{n} P(A cup H_i)$

Zawile to brzmi, jednak na przykładzie można przekonać się, że jest całkiem proste.

W naszym zadaniu istnieją dwie "drogi" wybrania kuli zielonej zależne od tego, czy najpierw wylosujemy urnę parzystą, czy nieparzystą.

Każde z tych zdarzeń ma prawdopodobieństwo zajścia równe ${1}/{2}$.

Prawdopodobieństwo wylosowania zielonej kuli w przypadku urn parzystych wynosi ${2}/{7}$, w przypadku nieparzystych - ${8}/{11}$.

Sumując otrzymujemy:

$P(A) = {2}/{7} × {1}/{2} + {8}/{11} × {1}/{2} = {39}/{77}$
 

Zadanie

Oblicz prawdopodobieństwo wyrzucenia szóstki przynajmniej raz rzucając kością do gry wedle zasad:

1) Rzucamy pierwszy raz - jeśli wypadła szóstka, kończymy grę.
2) Jeśli nie było szóstki, ale była liczba parzysta, to rzucamy dwoma kościami i kończymy grę.
3) Jeżeli wypadła liczba nieparzysta, rzucamy jedną kością jeszcze raz.

Nasze zdarzenie może zajść na kilka sposobów:

1) Z prawdopodobieństwem ${1}/{6}$ wyrzucimy ją za pierwszym razem.

2) Z prawdopodobieństwem ${2}/{6}$ dojdzie do sytuacji, gdy będziemy rzucali dwiema kościami - szansa na wyrzucenie chociaż jednej szóstki wzrasta wtedy do ${11}/{36}$, ponieważ wszystkich możliwych kombinacji rzutów jest 36, a możliwych kombinacji bez 6 - 25.

3) Z prawdopodobieństwem ${3}/{6}$ dojdzie do sytuacji, gdy będziemy rzucali jeszcze raz jedną kością - szansa wylosowania szóstki wynosi wtedy oczywiście ${1}/{6}$.

Korzytając z poznanego wzoru możemy obliczyć prawdopodobieństwo całkowite - jest ono równe prawdopodobieństwu wystąpienia każdej z sytuacji pomnożonemu przez prawdopodobieństwo wyrzucenia w tej sytuacji szóstki.

Mamy więc:

$P(6) = {1}/{6}*1 + {2}/{6}×{11}/{36} + {3}/{6}×{1}/{6}$
$P(6) = {19}/{54}$

Współrzędne wektora
Mając dane współrzędne końców wektora możemy wyznaczyć jego współrzędne: opisują one po prostu koniec wektora przy założeniu, że jego początek jest zaczepiony w punkcie $(0,0)$.

Jeśli początek leży w punkcie $A = (x_p,y_p)$, a koniec to punkt $B = (x_k, y_k)$, to współrzędne wektora wyznacza wzór:

${AB}↖{→} = [x_p-x_k, y_p-y_k]$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom