Chemia w zadaniach i przykładach. Zbiór zadań dla klas 7 i 8 szkoły podstawowej. (Zbiór zadań, Nowa Era )

Z substratów i produtków o podanych nazwach ułóż i napisz sześć równań reakcji chemicznych 4.57 gwiazdek na podstawie 7 opinii
  1. Szkoła podstawowa
  2. 7 Klasa
  3. Chemia

Z substratów i produtków o podanych nazwach ułóż i napisz sześć równań reakcji chemicznych

154
 Zadanie

155
 Zadanie
156
 Zadanie
157
 Zadanie
158
 Zadanie

`2Mg + O_2 -> 2MgO`

`2H_2+ O_2-> 2H_2O`

`Mg + Cl_2-> MgCl_2`

`H_2+ Cl_2-> 2HCl`

`C + O_2 -> CO_2`

`Fe_2O_3+ 3H_2-> 2Fe + 3H_2O`

DYSKUSJA
user profile image
Adrian

17 marca 2018
Dzięki za pomoc!
Informacje
Autorzy: Teresa Kulawik, Maria Litwin, Szarota Styka-Wlazło
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Jakub

1889

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Prostopadłościan i sześcian

Prostopadłościan to figura przestrzenna, której kształt przypomina pudełko lub akwarium.

Prostopadłościan

  • Każda ściana prostopadłościanu jest prostokątem.

  • Każdy prostopadłościan ma 6 ścian, 8 wierzchołków i 12 krawędzi.

  • Dwie ściany mające wspólną krawędź nazywamy prostopadłymi.

  • Dwie ściany, które nie mają wspólnej krawędzi, nazywamy równoległymi.

  • Każda ściana jest prostopadła do czterech ścian oraz równoległa do jednej ściany.


Z każdego wierzchołka wychodzą trzy krawędzie – jedną nazywamy długością, drugą – szerokością, trzecią – wysokością prostopadłościanu i oznaczamy je odpowiednio literami a, b, c.

Długości tych krawędzi nazywamy wymiarami prostopadłościanu.

a – długość prostopadłościanu, b – szerokość prostopadłościanu, c - wysokość prostopadłościanu.


Prostopadłościan, którego wszystkie ściany są jednakowymi kwadratami nazywamy sześcianem.

Wszystkie krawędzie sześcianu mają jednakową długość.

kwadrat

a - długość krawędzi sześcianu

Dzielenie z resztą

Na początek zapoznajmy się z twierdzeniem o dzieleniu z resztą, które brzmi następująco:
"Dla pary liczb całkowitych a i b (gdzie b ≠ 0) istnieją liczby całkowite q i r, dla których spełnione jest równanie a = qb + r, gdzie 0 ≤ r < │b│. Liczby q i r nazywa się odpowiednio ilorazem i resztą z dzielenia a przez b."

Innymi słowy, dzielenie z resztą to takie dzielenie, w którym iloraz nie jest liczbą całkowitą.

Przykład obliczania reszty z dzielenia:

  1. Podzielmy liczbę 23 przez 3.
  2. Wynikiem dzielenia nie jest liczba całkowita (nie dzieli się równo). Maksymalna liczba trójek, które zmieszczą się w 23 to 7.
  3. $$7 • 3 = 21$$
  4. Różnica między liczbami 23 i 21 wynosi 2, zatem resztą z tego dzielenia jest liczba 2.
  5. Poprawny zapis działania: $$21÷3=7$$ $$r.2$$

Przykłady:

  • $$5÷2=2$$ r. 1
  • $$27÷9=3$$ r. 0
  • $$(-8)÷(-3)=3 r. 1$$
  • $$(-15)÷4=-3$$ .r -3 lub $$(-15)÷4=-4$$ r. 1

  Zapamiętaj

Reszta jest zawsze mniejsza od dzielnika.

Zobacz także
Udostępnij zadanie