Chemia Nowej Ery 2 (Zeszyt ćwiczeń, Nowa Era )

Podkreśl wzory sumaryczne... 4.53 gwiazdek na podstawie 17 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Chemia

a) kwasów tlenowych

`ul(H_2SiO_3),\ H_2S,\ ul(HClO),\ HBr,\ HF,\ ul(H_2CrO_4),\ul( H_3PO_4) `

b) tlenków kwasowych

`CaO,\ ul(N_2O_3),\ ul(SO_3),\ CO,\ CuO,\ ul(CO_2),\ Na_2O,\ ul(P_4O_10)`

DYSKUSJA
user profile image
Asia

14 maja 2018
Dziękuję :)
user profile image
Renia

9 kwietnia 2018
Dzięki :):)
user profile image
Helena

9 listopada 2017
Dzięki za pomoc :)
user profile image
Gość

9 stycznia 2017
Mógłby ktoś mi wyjaśnić, dlaczego zostały zaznaczone te przykłady, a nie inne ?
user profile image
Ania

21310

10 stycznia 2017
@Gość Cześć, w podpunkcie a) podkreślono wzory kwasów tlenowych. Kwasy tlenowe są to takie kwasy, które w swojej strukturze (we wzorze) posiadają atomy tlenu. W podpunkcie b) podkreślono wzory tlenków kwasowych. Tlenki kwasowe to...
Informacje
Autorzy: Małgorzata Mańska. Elżbieta Megiel
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Ania

21306

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
System rzymski

System rzymski jest systemem zapisywania liczb, który w przeciwieństwie do zapisu pozycyjnego, pozwala zapisać liczby przy pomocy znaków o zawsze ustalonej wartości.


W systemie rzymskim do zapisania liczby używamy zdecydowanie mniej znaków niż w systemie dziesiątkowym.

Za pomocą 7 znaków (liter) : I, V, X, L, C, D i M jesteśmy w stanie ułożyć każdą liczbę naturalną od 1 do 3999.

Do każdego znaku przypisano inną wartość. 

Wyróżniamy cyfry podstawowe:

  • I = 1
  • X = 10
  • C = 100
  • M = 1000 

oraz cyfry pomocnicze:

  • V = 5
  • L = 50 
  • D = 500


Zasady zapisywania liczb w systemie rzymskim
:

  1. Możemy zapisać maksymalnie 3 takie same cyfry podstawowe (czyli I, X, C, M) obok siebie.

    Cyfry pomocnicze (czyli V, L, D) nie mogą występować obok siebie.

    Przykłady:

    • VIII  `->`   `5+1+1+1=8` 

    • MMCCC  `->`   `1000+1000+100+100+100=2300` 

  2. W celu uproszczenia wielu zapisów dopuszcza się umieszczenie cyfry podstawowej o mniejszej wartości przed cyfrą o większej wartości.

    W takim jednak przypadku od wartości większej liczby odejmujemy wartość mniejszej liczby.

    Przykłady:

    • IX  `->`   `10-1=9` 

    • CD  `->`   `500-100=400` 

  3. Gdy liczby (znaki) są ustawione od największej do najmniejszej to wówczas dodajemy ich wartości.

    Przykłady:

    • MMDCLVII  `->`   `1000+1000+500+100+50+5+1+1=2657`   

    • CXXVII  `->`   `100+10+10+5+1+1=127`   

 

Ciekawostka

System rzymski pochodzi od wysoko rozwiniętej cywilizacji Etrusków (ok. 500 r. p.n.e.).

Początkowo zapisywano liczby za pomocą pionowych kresek I, II, III, IIII, IIIII, ... .

Rzymianie przejęli cyfry od Etrusków i poddali je pewnym modyfikacjom oraz udoskonaleniom, co dało początki dzisiaj znanemu systemowi rzymskiemu.

Cyfr rzymskich używano na terenie imperium aż do jego upadku w V w. n.e.

W średniowieczu stały się standardowym systemem liczbowym całej łacińskiej Europy. Pod koniec tej epoki zaczęto coraz częściej używać cyfr arabskich, prostszych i wygodniejszych do obliczeń oraz zapisywania dużych liczb.

System rzymski stopniowo wychodził z codziennego użycia, chociaż do dziś jest powszechnie znany w Europie i stosowany do wielu celów.

Zobacz także
Udostępnij zadanie