Zbiór zadań maturalnych - CHEMIA (Zbiór zadań, Wydawnictwo szkolne OMEGA)

Podaj jeden, przykładowy zestaw stężeń... 4.5 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 1 Klasa
  3. Chemia

Podaj jeden, przykładowy zestaw stężeń...

Zadanie 175
 Zadanie
Zadanie 176
 Zadanie

Zadanie 177
 Zadanie

Początkowa szybkość reakcji opisanej w informacji wstępnej wynosi:

`v=36dm^3*mol^(-1)*s^(-1)*(0,2mol*dm^(-3))^2=1,44mol*dm^(-3)*s^(-1)`

Jeżeli prędkość ma być 5 razy większa, wyniesie one:

`v_2=1,44mol*dm^(-3)*s^(-1)*5=7,2mol*dm^(-3)*s^(-1)`

Równanie kinetyczne ma postać:

`v=k*[S_2O_8^(2-)]*[I^-] `

Podstawiamy dane do równania:

`7,2=36*x*y `

`x*y=0,2 `

`x=(0,2)/y `

Zakładając stężenie y równe np. `y=0,5 mol*dm^(-3)` to stężenie x wyniesie:

`x=(0,2)/(0,5)=0,4 `

Więc przykładowy zestaw stężeń molowych może wynieść:

`[S_2O_8^(2-)]=0,4mol*dm^(-3) `

`[I^-]=0,5mol*dm^(-3)`

DYSKUSJA
Informacje
Zbiór zadań maturalnych - CHEMIA
Autorzy: Barbara Pac
Wydawnictwo: Wydawnictwo szkolne OMEGA
Rok wydania:
Autor rozwiązania
user profile image

Ania

10305

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Cechy podzielności liczb

Cechy podzielności liczb ułatwiają znalezienie dzielników, zwłaszcza dużych liczb. Sprowadzają one rozwiązanie problemu podzielności liczb do prostych działań na niewielkich liczbach.

  1. Podzielność liczby przez 2

    Liczba jest podzielna przez 2, gdy jej ostatnią cyfrą jest 0, 2, 4, 6 lub 8.

    Przykład:

    • 1896319128 → liczba jest podzielna przez 2, ponieważ ostatnią cyfrą jest 8.
       
  2. Podzielność liczby przez 3

    Liczba jest podzielna przez 3, gdy suma jej cyfr dzieli się przez 3.

    Przykład:

    • 7981272 → liczba jest podzielna przez 3, ponieważ suma jej cyfr (7+9+8+1+2+7+2=36) dzieli się przez 3.
       
  3. Podzielność liczby przez 4

    Liczba jest podzielna przez 4, gdy jej dwie ostatnie cyfry tworzą liczbę podzielną przez 4.

    Przykład:

    • 21470092816 → liczba jest podzielna przez 4, ponieważ jej dwie ostatnie cyfry tworzą liczbę 16, a liczba 16 jest podzielna przez 4.
       
  4. Podzielność liczby przez 5

    Liczba jest podzielna przez 5, gdy jej ostatnią cyfrą jest 0 lub 5.

    Przykład:

    • 182947218415 → liczba jest podzielna przez 5, ponieważ jej ostatnią cyfrą jest 5.
       
  5. Podzielność liczby przez 6

    Liczba jest podzielna przez 6, gdy jednocześnie dzieli się przez 2 i 3.

    Przykład:

    • 1248 → liczba jest podzielna przez 6, ponieważ dzieli się przez 2 (jej ostatnią cyfrą jest 8), a także dzieli się przez 3 (suma jej cyfr 1+2+4+8=15 jest liczbą podzielną przez 3).
       
  6. Podzielność liczby przez 9

    Liczba jest podzielna przez 9 , gdy suma jej cyfr jest podzielna przez 9.

    Przykład:

    • 1890351 -> liczba jest podzielna przez 9, ponieważ suma jej cyfr (1+8+9+0+3+5+1=27) jest podzielna przez 9.
       
  7. Podzielność liczby przez 10

    Liczba jest podzielna przez 10, gdy jej ostatnią cyfra jest 0.

    Przykład:

    • 1920481290 → liczba jest podzielna przez 10, ponieważ jej ostatnią cyfrą jest 0.
       
  8. Podzielność liczby przez 25

    Liczba jest podzielna przez 25, gdy dwie ostatnie cyfry tworzą liczbę podzielną przez 25.

    Przykład:

    • 4675 → liczba podzielna przez 25, ponieważ jej dwie ostatnie cyfry tworzą liczbę 75, a 75 jest podzielne przez 25
       
  9. Podzielność liczby przez 100

    Liczba jest podzielna przez 100, gdy jej dwie ostatnie cyfry to zera.

    Przykład:

    • 12491848100 → liczba jest podzielna przez 100, ponieważ jej dwie ostatnie cyfry to zera.
Zobacz także
Udostępnij zadanie