Chemia Nowej Ery 2 (Podręcznik, Nowa Era)

Ustal które z wymienionych metali będą reagowały 4.45 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Chemia

Ustal które z wymienionych metali będą reagowały

1
 Zadanie
2
 Zadanie

3
 Zadanie

4*
 Zadanie

Cynk `Zn+2HCl->ZnCl_2+H_2uarr`

Magnez `Mg+2HCl->MgCl_2+H_2uarr` 

Wapń `Ca+2HCl->CaCl_2+H_2uarr`

Nikiel `Ni+2HCl->NiCl_2+H_2uarr`

Potas `2K+2HCl->2KCl+H_2uarr` 

DYSKUSJA
Informacje
Chemia Nowej Ery 2
Autorzy: Jan Kulawik,Teresa Kulawik, Marta Litwin
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Kasia

3143

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Liczby mieszane i ich zamiana na ułamek niewłaściwy
ulamek

Liczba mieszana jest to suma dwóch składników, z których jeden jest liczbą naturalną (składnik całkowity), a drugi ułamkiem zwykłym właściwym (składnik ułamkowy).

$$4 1/9= 4 + 1/9 $$ ← liczbę mieszana zapisujemy bez użycia znaku dodawania +.

Zamiana liczby mieszanej na ułamek niewłaściwy

Licznik tego ułamka otrzymujemy w następujący sposób: mianownik składnika ułamkowego mnożymy przez składnik całkowity i do tego iloczynu dodajemy licznik składnika ułamkowego. Mianownik natomiast jest równy mianownikowi składnika ułamkowego.

Przykład:

$$3 1/4= {3•4+1}/4= {13}/4$$
 
Wzajemne położenie prostych

Dwie proste mogą się przecinać w punkcie, mogą być do siebie prostopadłe lub równoległe.

  1. Proste przecinające się w punkcie P – proste mające jeden punkt wspólny.

    prosteprzecinajace
     
  2. Proste prostopadłe – to proste przecinające się pod kątem prostym.

    Jeśli proste a i b są prostopadłe (inaczej mówiąc prosta a jest prostopadła do prostej b), zapisujemy to symbolicznie w następujący sposób: $$a⊥b$$. Dwie proste prostopadłe tworzą cztery kąty proste

    prostekatprosty
     
  3. Proste równoległe – to proste nie mające punktów wspólnych lub pokrywające się.

    Jeżeli proste a i b są równoległe (inaczej mówiąc prosta a jest równoległa do prostej b), to zapisujemy to symbolicznie w następujący sposób: $$a∥b$$.
     

    proste-rownlegle
Zobacz także
Udostępnij zadanie