Zapisz w zeszycie opisane reakcje... 4.6 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 1 Klasa
  3. Chemia

a)

`2NaHCO_3\ #(->)^T\ Na_2CO_3+CO_2+H_2O `

Obliczamy masę sody oczyszczonej:

`m_(NaHCO_3)=23u+1u+12u+3*16u=84u `

Obliczamy zawartość węgla w sodzie oczyszczonej:

`%C=(m_C)/(m_(NaHCO_3))*100%=(12u)/(84u)*100%=14,29% `

b)

`(NH_4)_2CO_3\ #(->)^T\ 2NH_3+CO_2+H_2O `

Obliczamy masę węglanu amonu:

`m_((NH_4)_2CO_3)=2*18u+12u+3*16u=96u `

Obliczamy zawartość węgla w węglanie amonu:

`%C=(m_C)/(m_((NH_4)_2CO_3))*100%=(12u)/(96u)*100%=12,50% `

Odpowiedź: Więcej węgla znajduje się w sodzie oczyszczonej

DYSKUSJA
Informacje
To jest chemia 1. Podręcznik. Zakres podstawowy
Autorzy: Romuald Hassa, Aleksandra Mrzigod, Janusz Mrzigod
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Ania

2579

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Zobacz także
Udostępnij zadanie