Zgoda na przetwarzanie danych osobowych

25 maja 2018 roku zacznie obowiązywać Rozporządzenie Parlamentu Europejskiego i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO.

Dlatego aby dalej móc dostarczać Ci materiały odpowiednie do Twojego etapu edukacji, potrzebujemy zgody na lepsze dopasowanie treści do Twojego zachowania. Dzięki temu możemy zapamiętywać jakie materiały są Ci potrzebne. Dbamy o Twoją prywatność, więc nie zwiększamy zakresu naszych uprawnień. Twoje dane są u nas bezpieczne, a zgodę na ich zbieranie możesz wycofać na podstronie polityka prywatności.

Klikając "Przejdź do Odrabiamy", zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i prosimy o opuszczenie strony.

Polityka prywatności

Drogi Użytkowniku w każdej chwili masz prawo cofnąć zgodę na przetwarzanie Twoich danych osobowych. Cofnięcie zgody nie będzie wpływać na zgodność z prawem przetwarzania, którego dokonano na podstawie wyrażonej przez Ciebie zgody przed jej wycofaniem. Po cofnięciu zgody wszystkie twoje dane zostaną usunięte z serwisu. Udzielenie zgody możesz modyfikować w zakładce 'Informacja o danych osobowych'

Świat chemii 2a (Zeszyt ćwiczeń, Zamkor)

Korzystając z wykresu (zadanie 3) odpowiedz 4.5 gwiazdek na podstawie 6 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Chemia

Korzystając z wykresu (zadanie 3) odpowiedz

4
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) W teperaturze `15^oC` rozpuszczalność cukru wynosi ok. 196g/100g wody. W temperaturze `75^oC` rozpuszczalność cukru wynosi ok. 340g/100g wody.

 

b) Rozpuszczalność cukru wynos 230g/100g wody w temperaturze `25^oC` , a rozpuszczalność cukru wynosi 400g/100g wody w temperaturze `87^oC` .

 

c) Rozpuszczalność cukru w temperaturze `75^oC` wynosi 340g/100g wody.

Układamy proporcję:

`340g\ "cukru"----100g\ "wody"`

`\ \ \ \ \ \ \ \ \ \ \ \ \ x----50g\ "wody"`

`x=(340g*50g)/(100g)=170g`

Odp. W 50g wody o temperaturze `75^oC` rozpuści się 170g cukru.

 

Rozpuszczalność cukru w temperaturze `35^oC` wynosi 228g/100g wody.

Układamy proporcję:

`228g\ "cukru"----100g\ "wody"`

`\ \ \ \ \ \ \ \ \ \ \ \ \ x----250g\ "wody`

`x=(228g*250g)/(100g)=570g`

Odp. w 250g wody o temperaturze `35^oC` rozpuści się 570g cukru.

 

d) Rozpuszczalność cukru w temperaturze `25^oC` wynosi 230g/100g wody.

Obliczmy ile cukru maksymalnie rozpuści się w 150g wody o temperaturze `25^oC` .

`230g\ "cukru"----100g\ "wody"`

`\ \ \ \ \ \ \ \ \ \ \ \ x----150g\ "wody"`

`x=(230g*150g)/(100g)=345g`

Odp. Po zmieszaniu 150g wody i 250g cukru powstanie roztwór nienasycony.

 

e) Rozpuszczalność cukru w temperaturze `20^oC` wynosi 203,9g/100g wody.

Układamy proporcję:

`203,9g\ "cukru"----100g\ "wody"`

`\ \ \ \ 50g\ "cukru"----x`

`x=(50g*100g)/(203,9g)~~24,5g`

Odp. Aby przygotować roztwór nasycony do 50g cukru nalezy dodac około 24,5g wody.

DYSKUSJA
Informacje
Autorzy: Dorota Lewandowska, Anna Warchoł
Wydawnictwo: Zamkor
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Najmniejsza wspólna wielokrotność (NWW)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest 15.
    1. Wypiszmy wielokrotności liczby 3 (różne od 0): 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...
    2. Wypiszmy wielokrotności liczby 5 (różne od 0): 5, 10, 15, 20, 25, 30, 35, ...
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.

  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest 12.
    1. Wypiszmy wielokrotności liczby 4 (różne od 0): 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...
    2. Wypiszmy wielokrotności liczby 6 (różne od 0): 6, 12, 18, 24, 30, 36, 42, 48, ...
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6. Jest to 12.


Najmniejszą wspólną wielokrotność dwóch liczb można znaleźć także wykorzystując rozkład na czynniki pierwsze. 

Aby znaleźć NWW dwóch liczb należy: 

  1. Rozłożyć liczby na czynniki pierwsze. 

  2. Zaznaczyć wspólne dzielniki obu liczb. 

  3. Obliczyć iloczyn czynników pierwszej liczby oraz niezaznaczonych czynników drugiej liczby. 

Przykład:

Skala i plan

Przy wykonywaniu rysunków niektórych przedmiotów lub sporządzaniu map, planów musimy zmniejszyć rzeczywiste wymiary przedmiotów, aby rysunki zmieściły się na kartce. Są też rzeczy niewidoczne dla oka, które obserwujemy za pomocą mikroskopu, wówczas rysunki przedstawiamy w powiększeniu.
W tym celu stosujemy pewną skalę. Skala określa, ile razy dany obiekt został pomniejszony lub powiększony. Rozróżniamy zatem skale zmniejszające i zwiększające.

Skala 1:2 („jeden do dwóch”) oznacza, że przedstawiony obiekt jest dwa razy mniejszy od rzeczywistego, czyli jego wymiary są dwa razy mniejsze od rzeczywistych.

Skala 2:1 („dwa do jednego”) oznacza, że przedstawiony obiekt jest dwa razy większy od rzeczywistego, czyli jego wymiary są dwa razy większe od rzeczywistych.

Skala 1:1 oznacza, że przedstawiony obiekt jest taki sam jak rzeczywisty.

Przykład:

skala
 

Prostokąt środkowy jest wykonany w skali 1:1. Mówimy, że jest naturalnej wielkości. Prostokąt po lewej stronie został narysowany w skali 1:2, czyli jego wszystkie wymiary zostały zmniejszone dwa razy. Prostokąt po prawej stronie został narysowany w skali 2:1, czyli jego wszystkie wymiary zostały zwiększone dwa razy.

 

Przykłady na odczytywanie skali:

  • skala 1:50 oznacza zmniejszenie 50 razy
  • skala 20:1 oznacza zwiększenie 20 razy
  • skala 1:8 oznacza zmniejszenie 8 razy
  • skala 5:1 oznacza zwiększenie 5 razy
 

Plan to obraz niewielkiego obszaru, terenu, przedstawiony na płaszczyźnie w skali. Plany wykonuje się np. do przedstawienia pokoju, mieszkania, domu, rozkładu ulic w osiedlu lub mieście.

Mapa to podobnie jak plan obraz obszaru, tylko większego, przedstawiony na płaszczyźnie w skali (mapa musi uwzględniać deformację kuli ziemskiej). Mapy to rysunki terenu, kraju, kontynentu.

Skala mapy
Na mapach używa się skali pomniejszonej np. 1:1000000. Oznacza to, że 1 cm na mapie oznacza 1000000 cm w rzeczywistości (w terenie).

Przykłady na odczytywanie skali mapy
  • skala 1:500000 oznacza, że 1 cm na mapie to 500000 cm w rzeczywistości
  • skala 1:2000 oznacza, że 1 cm na mapie to 2000 cm w rzeczywistości
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom