Podczas lekcji uczniowie zapisali równania reakcji 4.58 gwiazdek na podstawie 19 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Chemia

Podczas lekcji uczniowie zapisali równania reakcji

1
 Zadanie
2
 Zadanie

3
 Zadanie

Zaznacz numer równania przedstawiającego:

1. reakcja spalania niecalkowitego - I. wyjaśnienie: produktami spalania niecalkowitego są para wodna i tlenek węgla(II) lub węgiel

2. reakcję chemiczną, w której wyniku otrzymano sól - IV. wyjaśnienie: sól sklada się z metalu i reszty kwasowej

3. proces fermentacji - III. wyjaśnienie: w procesie fermrntacji biorą udział bakterie

4. reakcję chemiczną, w której substratem jest alkohol - III.

DYSKUSJA
user profile image
Gość

0

2017-01-04
4. Powinno chyba byc II
Informacje
Chemia Nowej Ery 3 2013
Autorzy: Danuta Babczonek-Wróbel, Teresa Kulawik, Maria Litwin
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Najmniejsza wspólna wielokrotność (nww)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest: 15.
    1. Wypiszmy wielokrotności liczby 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...;
    2. Wypiszmy wielokrotności liczby 5: 5, 10, 15, 20, 25, 30, 35, ...;
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.
  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest: 12.
    1. Wypiszmy wielokrotności liczby 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...;
    2. Wypiszmy wielokrotności liczby 6: 6, 12, 18, 24, 30, 36, 42, 48, ...;
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6, widzimy że jest to 12.
Porównywanie ułamków

Porównywanie dwóch ułamków polega na stwierdzeniu, który z nich jest mniejszy, który większy.

  • Porównywanie ułamków o takich samych mianownikach
    Jeżeli ułamki zwykłe mają takie same mianowniki, to ten jest większy, który ma większy licznik

    Przykład:

    $$3/8$$ < $$5/8$$
     
  • Porównywanie ułamków o takich samych licznikach
    Jeżeli ułamki zwykłe mają takie same liczniki, to ten jest większy, który ma mniejszy mianownik.

    Przykład:

    $$4/5$$ > $$4/9$$
Zobacz także
Udostępnij zadanie