Świat chemii 1 (Zeszyt ćwiczeń, Zamkor)

Napisz słownie podane zapisy: 4.73 gwiazdek na podstawie 11 opinii
  1. Gimnazjum
  2. 1 Klasa
  3. Chemia

Napisz słownie podane zapisy:

1
 Zadanie

2
 Zadanie
3
 Zadanie

a) `H` - atom wodoru

b) `Cl ` - atom chloru

c) `H_2` - dwuatomowa cząsteczka wodoru

d) `2\ Cl` - 2 atomu chloru

e) `2\ H` - 2 atomy wodoru

f) `Cl_2` - dwuatomowa cząsteczka chloru

g) `4\ P` - 4 atomy fosforu

h) `4\ P_4` - 4 czteroatomowe cząsteczki fosforu

i) `P_4` - czteroatomowa cząśteczka fosforu

j) `2\ S_8` - 2 ośmioatomowe cząsteczki siarki

k) `2\ H_2` - 2 dwuatomowe cząsteczki wodoru

l) `3\ Cl_2` - 3 dwuatomowe cząsteczki chloru

DYSKUSJA
user profile image
Gość

25-09-2017
dzięki
Informacje
Świat chemii 1
Autorzy: Dorota Lewandowska, Barbara Nalewczyńska, Anna Warchoł
Wydawnictwo: Zamkor
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Siatka prostopadłościanu

Po rozcięciu powierzchni prostopadłościanu wzdłuż kilku krawędzi i rozłożeniu go na powierzchnię płaską powstanie jego siatka. Jest to wielokąt złożony z prostokątów, czyli ścian graniastosłupa. Ten sam prostopadłościan może mieć kilka siatek.

Siatka prosopadłościanu
Pozycyjny system dziesiątkowy

System liczenia, którego używamy jest pozycyjny i dziesiątkowy. Wyjaśnijmy co to oznacza:

  • pozycyjny, ponieważ liczbę przedstawia się jako ciąg cyfr, a wartość poszczególnych cyfr zależy od miejsca (pozycji), jakie zajmuje ta cyfra,
  • dziesiątkowy, ponieważ liczby zapisujemy za pomocą dziesięciu znaków, zwanych cyframi: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Przykład (wyjaśniający pojęcie pozycyjnego systemu dziesiątkowego):

img01
 

Każda z cyfr użyta w powyższej liczbie tworzy określoną wartość, która jest uzależniona od miejsca (pozycji), jaką zajmuje ta cyfra w zapisie utworzonej liczby.

Jeśli użyjemy dokładnie tych samych cyfr, z których zbudowana jest powyższa liczba, ale użyjemy ich w innej kolejności to otrzymamy całkiem inną liczbę (np. 935287, 728395).

Przestawienie kolejności cyfr zmienia wartość liczby, dlatego nasz system liczenia jest pozycyjny (ponieważ miejsce cyfry w zapisie liczby nadaje wartość tej liczbie), natomiast używanie dziesięciu cyfr do zapisu liczby powoduje, że nazywamy go dziesiątkowym systemem.
 

Liczbę z powyższego przykładu możemy zapisać też w następujący sposób:
$$3•1+9•10+5•100+7•1000+8•10000+2•100000= 287 593$$
 

Przykład (czytanie zapisanych liczb w pozycyjnym systemie dziesiątkowym):
  • 22 500 - czytamy: dwadzieścia dwa i pół tysiąca lub dwadzieścia dwa tysiące pięćset,
  • 1 675 241 - czytamy: milion sześćset siedemdziesiąt pięć tysięcy dwieście czterdzieści jeden.

  Ciekawostka

Pozycyjny system dziesiątkowy pochodzi prawdopodobnie z Indii (znany jest napis z 683 roku zawierający zapis liczby w systemie pozycyjnym z użyciem zera). Za pośrednictwem Arabów system ten oraz zero dotarły do Europy (stąd nazwa cyfry arabskie) i obecnie jest powszechnie używanym systemem liczbowym.

Zobacz także
Udostępnij zadanie