To jest chemia. Zbiór zadań. Zakres rozszerzony (Zbiór zadań, Nowa Era)

Drobiny biorące udział w reakcjach redoks, w których 4.6 gwiazdek na podstawie 10 opinii
  1. Liceum
  2. 1 Klasa
  3. Chemia

Drobiny biorące udział w reakcjach redoks, w których

280
 Zadanie
281
 Zadanie

282
 Zadanie

Określmy stopnie utlenienia w poszczególnych drobinach: 

`N_2^0,\ N^(II)O^(-II),\ N^(-III)H_3^(I),\ Na_3^(I)N^(-III),\ N_2^(II)H^(-I),\ N^(V)O_3^(-)`

Możliwe stopnie utlenienia azotu to: -III, 0, II, III, IV, V

Jeśli azot w danej drobinie występuje na najniższym stopniu utlenienia, czyli -III, to może się jedynie utlenić, więc będzie reduktorem. Jeśli azot w danej drobinie występuje na najwyższym stopniu utlenienia, czyli V, to może się jedynie zredukować, czyli będzie utleniaczem. Jeśli azot w danej drobinie występuja na którymś z pozostałych możliwych stopni utlenienia, to może uledz zarówno reakcji utlenienia jak i redukcji, więc może być i utleniaczem i reduktorem.

a) tylko utlenacz: `NO_3^(-)` 

b) tylko reduktor: `NH_3,\ Na_3N`  

c) utleniacz i reduktor: `N_2,\ NO,\ N_2H_4` 

 

DYSKUSJA
user profile image
Nikodem

5 lutego 2018
Dzięki :):)
user profile image
Porky :D

11 listopada 2017
Dziękuję!
Informacje
Autorzy: Stanisław Banaszkiewicz, Magdalena Kołodziejska, Elżbieta Megiel, Grażyna Świderska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Nauczyciel

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Koło i okrąg

Okrąg o środku S i promieniu długości r (r – to długość, więc jest liczbą dodatnią, co zapisujemy r>0) jest to krzywa, której wszystkie punkty leżą w tej samej odległości od danego punktu S zwanego środkiem okręgu.

Inaczej mówiąc: okręgiem o środku S i promieniu r nazywamy zbiór wszystkich punków płaszczyzny, których odległość od środka S jest równa długości promienia r.

okreg1
 

Koło o środku S i promieniu długości r to część płaszczyzny ograniczona okręgiem wraz z tym okręgiem.

Innymi słowy koło o środku S i promieniu długości r to figura złożona z tych punktów płaszczyzny, których odległość od środka S jest mniejsza lub równa od długości promienia r.

okreg2
 

Różnica między okręgiem a kołem – przykład praktyczny

Gdy obrysujemy np. monetę powstanie nam okrąg. Po zakolorowaniu tego okręgu powstanie nam koło, czyli zbiór punktów leżących zarówno na okręgu, jak i w środku.

okrag_kolo

Środek okręgu (lub koła) to punkt znajdujący się w takiej samej odległości od każdego punktu okręgu.
Promień okręgu (lub koła) to każdy odcinek, który łączy środek okręgu z punktem należącym do okręgu.

Cięciwa okręgu (lub koła) - odcinek łączący dwa punkty okręgu
Średnica okręgu (lub koła) - cięciwa przechodząca przez środek okręgu. Jest ona najdłuższą cięciwą okręgu (lub koła).

Cięciwa dzieli okrąg na dwa łuki.
Średnica dzieli okrąg na dwa półokręgi, a koło na dwa półkola.

kolo_opis
Dodawanie i odejmowanie

Działania arytmetyczne to dwuargumentowe działania, które dwóm danym liczbom przyporządkowują trzecią liczbę, czyli tzw. wynik działania. Zaliczamy do nich dodawanie, odejmowanie, mnożenie i dzielenie.

  1. Dodawanie to działanie przyporządkowujące dwóm liczbom a i b, liczbę c = a + b. Wynik dodawania nazywany jest sumą, a dodawane składnikami sumy.
     

    dodawanie liczb


    Składniki podczas dodawania można zamieniać miejscami, dlatego mówimy, że jest ono przemienne. Niekiedy łatwiej jest dodać dwa składniki, gdy skorzystamy z tej własności.
    Przykład: $$7 + 19 = 19 +7$$.

    Kiedy jednym ze składników sumy jest inna suma np. (4+8), to możemy zmienić położenie nawiasów (a nawet je pominąć), na przykład $$12 + (4 + 8) = (12 + 8) + 4 = 12 + 8 + 4$$
    Mówimy, że dodawanie jest łączne.

    Poniżej przedstawiamy przykład, gdy warto skorzystać z praw łączności i przemienności:
    $$12 + 3 + 11 + (7 + 8) + 9 = 12 + 8 +3 +7 + 11 + 9 = 20 + 10 + 20 = 50$$
     

  2. Odejmowanie
    Odjąć liczbę b od liczby a, tzn. znaleźć taką liczbę c, że a = b+ c.
    Przykład $$23 - 8 = 15$$, bo $$8 + 15 = 23$$.

    Odejmowane obiekty nazywane są odpowiednio odjemną i odjemnikiem, a wynik odejmowania różnicą.

    odejmowanie liczb

    Odejmowanie w przeciwieństwie do dodawania nie jest ani łączne, ani przemienne.
    np. $$15 - 7 ≠ 7 - 15$$ (gdzie symbol ≠ oznacza "nie równa się").
 
Zobacz także
Udostępnij zadanie