Poniżej opisano dwie reakcje chemiczne - Zadanie 3: To jest chemia 1. Podręcznik zakres rozszerzony - strona 249
Chemia
Wybierz książkę
Poniżej opisano dwie reakcje chemiczne 4.8 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 2 Klasa
  3. Chemia

Poniżej opisano dwie reakcje chemiczne

1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie
5
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) Jest to endoenergatyczna reakcja analizy

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy II liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
II liceum
Informacje
Autorzy: Maria Litwin, Szarota Styka-Wlazło, Joanna Szymońska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Symetria w układzie współrzędnych
Jedną z operacji symetrii jest odbicie jakiegoś obiektu względem innego obiektu (w naszym przypadku środka układu współrzędnych lub jednej z osi). Odbicie polega wtedy na zachowaniu odległości względem osi lub środka układu. Odległość ta jest mierzona na linii
- prostopadłej do osi (gdy odbijam względem osi)
- Przecinającej środek układu (gdy odbijam względem środka układu)

Zadaniem tego działu będzie zobrazowanie takiego odbicia, a także pokazanie jak się zachowują współrzędne w takiej sytuacji.


Symetria względem osi

Osią będziemy nazywać oś X lub Y i to względem niej będziemy opracowywać symetrię. Narysujmy układ współrzędnych.

Przykład:
symetrie1
Został na nim zaznaczony punkt A, odczytujemy współrzędne A(1;2).
Odbijmy go względem osi X.
Zauważcie, że czerwony odcinek jest równa długością niebieskiemu:

symetrie2
Odczytajmy współrzędne punktu A’ pamiętając, że odcinek AA' jest pod kątem prostym do osi X. Nasz A’ ma obecnie A’(1,-2).

Teraz weźmy oś Y i ten sam punkt:
symetrie3
Również mamy równą odległość od osi, punkt A’’ (-1;2).


Symetria względem środka układu:
W tym wypadku przecinamy naszą linią punkt, który jest środkiem układu, więc nie ma mowy o kącie prostym, po prostu doprowadzamy linię do tego punktu, a potem taką samą długość za nim. Na tym samym przykładzie:

symetrie4
Widzimy, że współrzędne A’’’ to (-1;-2).

tab1

Jak widać przy symetrii względem osi X wartość Y zmienia się na przeciwną, przy symetrii względem osi Y wartość X zmienia się na przeciwną, natomiast przy symetrii przez środek układu obie wartości zmieniają się na przeciwne.

 
Tworzenie nowych podstaw

Jeżeli w przykładzie (często to się zdarza) podane nie będą potęgi o tych samych wykładnikach, musimy je znaleźć.

Jedyny wymóg to zapamiętanie tzw. potęg złożonych czyli:

  • $4=2^2$
  • $27=3^3$


Przykład:

$8^3÷2^10×16^2÷4^3$

Każda z tych liczb w podstawie to potęga dwójki, pokażmy to:

${(2^3)}^3÷2^10×{(2^4)}^2÷{(2^2)}^3$

Teraz użyjmy potęgowania potęg:

$2^9÷2^10×2^8÷2^6$

I mnożymy oraz dzielimy:

$2^{9-10+8-6}=2^1=2$
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom