Przepuszczając przez pewien ośrodek dyspersyjny - Zadanie 1: To jest chemia 1. Podręcznik zakres rozszerzony - strona 236
Chemia
Wybierz książkę
Przepuszczając przez pewien ośrodek dyspersyjny 5.0 gwiazdek na podstawie 5 opinii
  1. Liceum
  2. 2 Klasa
  3. Chemia

Przepuszczając przez pewien ośrodek dyspersyjny

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie
UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

Odp. a) zol

Zadanie premium

Reszta rozwiązania tego zadania jest widoczna tylko dla użytkowników Premium dla klasy II liceum

Jedynie niewielka część zadań rozwiązanych przez naszych nauczycieli jest dostępna za darmo. Wykup konto Premium, aby uzyskać dostęp do całej zawartości serwisu 🙂
DYSKUSJA
klasa:
II liceum
Informacje
Autorzy: Maria Litwin, Szarota Styka-Wlazło, Joanna Szymońska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Nauczyciel

Wiedza
Przesunięcie o wektor

Przesunięcie o wektor to transformacja polegając na przesunięciu wykresu funkcji o ileś pól po osi X (w lewo lub w prawo) i po osi Y (w górę lub w dół).

Oznaczmy sobie funkcję bazową jako $f(x)$ i zawsze transformujmy wg tego wzoru:
$f(x-a)+b$

gdzie a to ilość pól wzdłuż osi x, a b ilość pól wzdłuż osi y. Oznacza to przesunięcie o wektor [a;b].

Załóżmy, że będziemy przesuwać zawsze o 5 pól, co daje wzory:

O pięć pól w górę: $f(x)+5$

O pięć pól w dół: $f(x)-5$

O pięć pól w lewo: $f(x+5)$

O pięć pól w prawo: $f(x-5)$

Możemy też przesuwać jednocześnie

O pięć pól w lewo i o pięć pól w dół: $f(x+5)-5$

Jak to wygląda na rysunku?

Spójrz na wykres:

wyk1

Przesuńmy go o 3 w górę:

Wtedy musimy wszystkie punkty zgięcia przesunąć o 3 w górę a potem połączyć, tak jak zostało to przedstawione na rysunku:

wyk2

Teraz nasz wzór to $f(x)+3$ Tak samo możemy zrobić z X i Y równocześnie, przesuńmy wykres bazowy (o wzorze $f(x)$):

wyk1

O wektor $[-2;-1]$

Nie boimy się słowa wektor, po prostu o 2 w lewo, bo -2 powoduje, że odejmujemy od współrzędnej X dwa pola, a -1 w dół, bo odejmujemy jedno pole od Y.

Znów po punktach:

wyk3
Wzór takiego nowego wykresu to $f(x+2)-1$.
 

Ostrosłup

Ostrosłupem nazywamy taki wielościan, którego jedna ściana jest dowolnym wielokątem (podstawa), a pozostałe ściany (ściany boczne) są trójkątami o wspólnym wierzchołku.

img07
 

Ostrosłupy również mogą być:

  • proste - wtedy każda krawędź boczna jest równej długości,
  • prawidłowe - wtedy podstawą jest wielokąt foremny, a jego spodek wysokości pokrywa się ze środkiem okręgu opisanego na jego podstawie. Tak jak wcześniej, wszystkie ostrosłupy prawidłowe są proste (ale nie odwrotnie).

Wysokością ostrosłupa nazywamy najkrótszy odcinek, łączący wierzchołek z płaszczyzną podstawy. Na czerwono został oznaczony kąt nachylenia krawędzi ściany do podstawy.

img08
 
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMYZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NAWIADOMOŚCI
NAPISALIŚCIEKOMENTARZY
komentarze
... irazy podziękowaliście
Autorom