To jest chemia. Karty pracy ucznia. Zakres podstawowy (Podręcznik, Nowa Era)

Wskaż poprawnie zapisane substraty... 4.67 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 1 Klasa
  3. Chemia

Wskaż poprawnie zapisane substraty...

9
 Zadanie

Równanie reakcji spalania całkowitego izooktanu wygląda następująco:

`2C_8H_18+25O_2\ ->\ 16CO_2+18H_2O `

 

Substraty:

`A.\ C_8H_18+O_2 `

Produkty:

`b)\ CO_2+H_2O `

Współczynniki stechiometryczne:

` II.\ 2,\ 25,\ 16,\ 18`

DYSKUSJA
user profile image
Józef

14 października 2017
dzieki :):)
user profile image
Bogdan

23 września 2017
Dzieki za pomoc
Informacje
To jest chemia. Karty pracy ucznia. Zakres podstawowy
Autorzy: Aleksandra Kwiek
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Ania

13061

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Zobacz także
Udostępnij zadanie