Wyszukaj w literaturze lub w internecie informacje na temat lamp karbidowych 4.63 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Chemia

Wyszukaj w literaturze lub w internecie informacje na temat lamp karbidowych

1
 Zadanie
2
 Zadanie
3
 Zadanie

Wykonaj ćwiczenie
 Zadanie

Były to lampy w których jako paliwa używało się acetylenu otrzymywanego w reakcji chemicznej karbidu z wodą w zbiorniku lampy. Stosowane były przez m.in. górników, kolejarzy. Stosowano je również w lampach rowerowych, motorowych i samochodowych.

Stanowiły zagrożenie przez wytwarzanie wysoko palnego acetylenu, który przy nieszczelności pojemnika mógł prowadzić do wybuchu. 

DYSKUSJA
Informacje
Ciekawa chemia 3 2014
Autorzy: Hanna Gulińska, Janina Smolińska
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Korepetytor

Masz wątpliwości co do rozwiązania?

Wiedza
Dzielenie ułamków dziesiętnych przez 10, 100, 1000...

Aby podzielić ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w lewo o tyle miejsc ile jest zer w liczbie przez którą dzielimy (czyli w 10, 100, 1000 itd.)

Przykłady:

  • $$0,34÷10= 0,034$$ ← przesuwamy przecinek o jedno miejsce w lewo
  • $$311,25÷100= 3,1125$$ ← przesuwamy przecinek o dwa miejsca w lewo
  • $$53÷1000= 0,053$$ ← przesuwamy przecinek o trzy miejsca w lewo
Pole powierzchni prostopadłościanu

Pole powierzchni prostopadłościanu to suma pól wszystkich jego ścian.

$$P_p$$ -> pole powierzchni

Pole powierzchni prostopadłościanu
 

Każdy prostopadłościan ma 3 pary takich samych ścian.

Pole powierzchni oblicza się z poniższego wzoru, gdzie $$P_1$$, $$P_2$$ i $$P_3$$ to pola ścian prostopadłościanu.

$$P_p=2•P_1+2•P_2+2•P_3$$

Wzór na pole powierzchni prostopadłościanu możemy zapisać w następującej postaci:
$$P_p = 2•a•b + 2•b•c + 2•a•c$$ (a,b,c - wymiary prostopadłościanu)
 

  Zapamiętaj

Sześcian ma sześć jednakowych ścian, więc pole jego powierzchni oblicza się ze wzoru: $$P_p=6•P$$, gdzie P oznacza pole jednej ściany tego sześcianu. Natomiast wzór na pole powierzchni sześcianu możemy zapisać w następującej postaci: $$P_p = 6•a•a = 6•a^2$$ (a - bok sześcianu).

Zobacz także
Udostępnij zadanie