Podczas powstawania moczu w nerkach glukoza jest transportowana z nakładem energii 4.67 gwiazdek na podstawie 6 opinii
  1. Liceum
  2. 2 Klasa
  3. Biologia

Podczas powstawania moczu w nerkach glukoza jest transportowana z nakładem energii

1
 Zadanie
2
 Zadanie

3
 Zadanie

a) Transport glukozy z kanalików nerkowych do naczyń krwionośnych to transport aktywny, ponieważ zachodzi wbrew gradientowi stężeń i wymaga nakładów energii.

 

b) W konsekwencji zwrotnego wchłaniania glukozy w moczu zdrowego człowieka nie powinna znajdować się glukoza, która świadczy o cukrzycy. 

DYSKUSJA
Informacje
Biologia na czasie 2. Zakres rozszerzony
Autorzy: Franciszek Dubert, Ryszard Kozik, Stanisław Krawczyk
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

2894

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Największy wspólny dzielnik (nwd)

Największy wspólny dzielnik (NWD) dwóch liczb naturalnych jest to największa liczba naturalna, która jest dzielnikiem każdej z tych liczb.

Przykłady:

  • Największy wspólny dzielnik liczb 6 i 9 to liczba 3.

    1. Wypiszmy dzielniki liczby 6: 1, 2, 3, 6;
    2. Wypiszmy dzielniki liczby 9: 1, 3, 9;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 6 i 9. Jest to 3.
  • Największy wspólny dzielnik liczb 12 i 20 to liczba 4.

    1. Wypiszmy dzielniki liczby 12: 1, 2, 3, 4, 6, 12;
    2. Wypiszmy dzielniki liczby 20: 1, 2, 4, 5, 10, 20;
    3. Wśród dzielników wyżej wypisanych szukamy największej liczby, która jest zarówno dzielnikiem 12 i 20. Jest to 4.
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Zobacz także
Udostępnij zadanie