Wyjaśnij, dlaczego większość narządów zmysłów znajduje się w przednim odcinku ciała. - Zadanie 6: Biologia na czasie 1. Zakres rozszerzony - strona 424
Wybierz przedmiot
Brak innych książek z tego przedmiotu
Wyjaśnij, dlaczego większość narządów zmysłów znajduje się w przednim odcinku ciała. 4.57 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Biologia

Wyjaśnij, dlaczego większość narządów zmysłów znajduje się w przednim odcinku ciała.

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie

6
 Zadanie

8
 Zadanie

Skupienie narządów zmyslów nastąpiło w przednim odcinku ciała, ponieważ zwierzęta "badają" teren przednią częścią ciała, a narządy zlokalizowane w tym odcinku ułatwiają im orientację. 

DYSKUSJA
opinia do odpowiedzi undefined
Hubert

20 marca 2018
dzięki!
komentarz do odpowiedzi undefined
dariuszz

6 grudnia 2017
dzięki!
klasa:
4 szkoły podstawowej
Informacje
Autorzy: Marek Guzik, Ewa Jastrzębska, Ryszard Kozik, Renata Matuszewska, Ewa Pyłka-Gutowska, Władysław Zamachowski
Wydawnictwo: Nowa Era
Rok wydania:
ISBN: 9788326721335
Autor rozwiązania
user profile

Monika

34432

Nauczyciel

Wiedza
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$
 
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $5•5=5^2 $, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $7•7•7=7^3$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $3•3•3•3•3=3^5 $, czytamy: „trzy do potęgi piątej”

    $2•2•2•2•2•2•2=2^7 $, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY3232ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA5351WIADOMOŚCI
NAPISALIŚCIE717KOMENTARZY
komentarze
... i7533razy podziękowaliście
Autorom