Podaj cechy, na podstawie których można zaliczyć dane zwierzę do odpowiedniej gromady stawonogów. 4.71 gwiazdek na podstawie 7 opinii
  1. Liceum
  2. 1 Klasa
  3. Biologia

Podaj cechy, na podstawie których można zaliczyć dane zwierzę do odpowiedniej gromady stawonogów.

1
 Zadanie

2
 Zadanie

3
 Zadanie
4
 Zadanie
5
 Zadanie
6
 Zadanie
7
 Zadanie
8
 Zadanie

SKORUPIAKI:

- posiadają dwie pary czułków i trzy pary odnóży gębowych - żuwaczki i dwie pary szcczęk

 

STARORAKI:

- głowotułów pokryty jest jednolitym oskórkiem

- na odnóżach odwłokowych znajdują się skrzela

 

PAJĘCZAKI:

- narządem oddechowym są płucotchawki

- brak odnóży na odwłoku

 

WIJE:

- ciało złożone z głowy i tułowia złożonego z wielu segmentów

- brak odwłoku

 

OWADY:

- ciało złożone z głowy, tułowia i odwłoka

- tułów złożony z trzech segmentów

- trzy pary odnóży, po jednej parze na każdym segmencie tułowiowym

 

DYSKUSJA
user profile image
Gość

0

2017-11-11
dzieki!
Informacje
Biologia na czasie 1. Zakres rozszerzony
Autorzy: Marek Guzik, Ewa Jastrzębska, Ryszard Kozik, Renata Matuszewska, Ewa Pyłka-Gutowska, Władysław Zamachowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

6158

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Wielokrotności

Wielokrotność liczby to dana liczba pomnożona przez 1,2,3,4,5 itd.
Inaczej mówiąc, wielokrotność liczby n to każda liczba postaci 1•n, 2•n, 3•n, 4•n, 5•n ...

Przykłady:

  • wielokrotnością liczby 4 jest:
    • 4, bo $$4=1•4$$
    • 8, bo $$8=2•4$$
    • 12, bo $$12=3•4$$
    • 16, bo $$16=4•4$$
    • 20, bo $$20=5•4$$
       
  • wielokrotnością liczby 8 jest:
    • 8, bo $$8=1•8$$
    • 16, bo $$16=2•8$$
    • 24, bo $$24=3•8$$
    • 32, bo $$32=4•8$$
    • 40, bo $$40=5•8$$
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Zobacz także
Udostępnij zadanie