Porównaj budowę chemiczną skrobii, glikogenu 4.64 gwiazdek na podstawie 11 opinii
  1. Liceum
  2. 1 Klasa
  3. Biologia

Zarówno skrobia, jak i glikogen oraz celuloza należą do homoglikanów - zbudowane są z reszt glukozowych. Monomery glukozy znajdujące się obok siebie ułożone są mostkami tlenowymi w tę samą stronę. W budowie skrobii i glikogenu charakterystyczne są  liczne odgałęzienia, odchodzące od głównych łańcuchów. W cząsteczce glikogenu rozgałęzienia są umiejscowione znacznie częściej niż w przypadku cząsteczki skrobii. Celuloza wykazuje zupełnie odmienną budowę niż skrobia i glikogen - reszty glukozowe tworzą długie proste łańcuchy, bez żanych odgałęzień. Sąsiednie monomery mają mostki tlenowe zwrócone naprzemiennie - jeden w jedną, kolejny w drugą stronę. Łańcuchy celulozowe ułożone są równolegle do siebie i splatają się we włókna, które przypominają linę okrętową.

DYSKUSJA
Informacje
Biologia na czasie 1. Zakres rozszerzony
Autorzy: Marek Guzik, Ewa Jastrzębska, Ryszard Kozik, Renata Matuszewska, Ewa Pyłka-Gutowska, Władysław Zamachowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

1074

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Kwadraty i sześciany liczb

Iloczyn jednakowych czynników możemy zapisać krócej - w postaci potęgi.

  1. Iloczyn dwóch takich samych liczb (czynników) nazywamy kwadratem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi drugiej.
    Przykład:
    $$5•5=5^2 $$, czytamy: „kwadrat liczby pięć” lub „pięć do potęgi drugiej”

  2. Iloczyn trzech takich samych czynników nazywamy sześcianem tej liczby (czynnika) lub mówimy, że dana liczba (czynnik) jest podniesiona do potęgi trzeciej.
    Przykład:
    $$7•7•7=7^3$$, czytamy: „sześcian liczby siedem” lub „siedem do potęgi trzeciej”

  3. Gdy występuje iloczyn więcej niż trzech takich samych czynników mówimy, że dana liczba (czynnik) jest podniesiony do potęgi takiej ile jest czynników.
    Przykład:
    $$3•3•3•3•3=3^5 $$, czytamy: „trzy do potęgi piątej”

    $$2•2•2•2•2•2•2=2^7 $$, czytamy: „dwa do potęgi siódmej”
     

potegi-nazewnictwo
Dodawanie pisemne

Krok po kroku jak wykonywać dodawanie pisemne:

  1. Składniki zapisujemy jeden pod drugim tak, by cyfry jedności tworzyły jedną kolumnę, cyfry dziesiątek – drugą, cyfry setek – trzecią, itd. (czyli cyfry liczb wyrównujemy do prawej strony), a następnie oddzielamy je poziomą kreską.

    dodawanie1
     
  2. Dodawanie prowadzimy od strony prawej do lewej. Najpierw dodajemy jedności, czyli ostatnie cyfry w dodawanych liczbach – w naszym przykładzie będzie to 9 i 3. Jeżeli uzyskana suma jest większa od 9, to w kolumnie jedności pod kreską piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny dziesiątek.
    W naszym przykładzie mamy $$9 + 3 = 12$$, czyli w kolumnie jedności piszemy 2, a 1 przenosimy do kolumny dziesiątek.

    dodawanie2
     
  3. Następnie dodajemy dziesiątki naszych liczb wraz z cyfrą przeniesioną i postępujemy jak poprzednio, czyli jeśli uzyskana suma jest większa od 9, to w kolumnie dziesiątek piszemy cyfrę jedności tej sumy, a pozostałą cyfrę sumy przenosimy do kolumny setek.
    W naszym przykładzie otrzymamy: $$1 + 5 + 6 = 12$$, czyli w kolumnie dziesiątek piszemy 2, a 1 przenosimy do kolumny setek.

    dodawanie3
     
  4. Dodajemy cyfry setek wraz z cyfrą przeniesioną i wynik zapisujemy pod kreską.
    W naszym przykładzie mamy: $$1+2+1=4$$ i wynik ten wpisujemy pod cyframi setek.

    dodawanie4
     
  5. W rezultacie opisanego postępowania otrzymujemy wynik dodawania pisemnego.
    W naszym przykładzie sumą liczb 259 i 163 jest liczba 422.

Zobacz także
Udostępnij zadanie