Biologia na czasie 1. Zakres rozszerzony (Podręcznik, Nowa Era)

Wyjaśnij, dlaczego miękisz palisadowy mieści się zwykle 4.55 gwiazdek na podstawie 11 opinii
  1. Liceum
  2. 1 Klasa
  3. Biologia

Wyjaśnij, dlaczego miękisz palisadowy mieści się zwykle

1
 Zadanie
2
 Zadanie
3
 Zadanie
4
 Zadanie
5
 Zadanie

6
 Zadanie

7
 Zadanie
8
 Zadanie
To rozwiązanie również znajduje się na naszej stronie!

uzyskaj dostęp do tego oraz tysięcy innych zadań, które dla Was rozwiązaliśmy

DYSKUSJA
user profile image
Katarzyna

08-12-2017
Dzięki :):)
user profile image
Mateusz

04-11-2017
Dzieki za pomoc :)
Informacje
Biologia na czasie 1. Zakres rozszerzony
Autorzy: Marek Guzik, Ewa Jastrzębska, Ryszard Kozik, Renata Matuszewska, Ewa Pyłka-Gutowska, Władysław Zamachowski
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

12143

Nauczyciel

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Wielokrotności

Wielokrotność liczby to dana liczba pomnożona przez 1,2,3,4,5 itd.
Inaczej mówiąc, wielokrotność liczby n to każda liczba postaci 1•n, 2•n, 3•n, 4•n, 5•n ...

Przykłady:

  • wielokrotnością liczby 4 jest:
    • 4, bo $$4=1•4$$
    • 8, bo $$8=2•4$$
    • 12, bo $$12=3•4$$
    • 16, bo $$16=4•4$$
    • 20, bo $$20=5•4$$
       
  • wielokrotnością liczby 8 jest:
    • 8, bo $$8=1•8$$
    • 16, bo $$16=2•8$$
    • 24, bo $$24=3•8$$
    • 32, bo $$32=4•8$$
    • 40, bo $$40=5•8$$
Oś liczbowa

Oś liczbowa to prosta, na której każdemu punktowi jest przypisana dana wartość liczbowa, zwana jego współrzędną.

Przykład:

osie liczbowe

Odcinek jednostkowy na tej osi to część prostej między -1 i 0.

Po prawej stronie od 0 znajduje się zbiór liczb nieujemnych, a po lewej zbiór liczb niedodatnich. Grot strzałki wskazuje, że w prawą stronę rosną wartości współrzędnych. Oznacza to, że wśród wybranych dwóch współrzędnych większą wartość ma ta, która leży po prawej stronie (względem drugiej współrzędnej).

Zobacz także
Udostępnij zadanie