Wyjaśnij, dlaczego alkoholizm i nikotynizm 4.25 gwiazdek na podstawie 8 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Biologia

Wyjaśnij, dlaczego alkoholizm i nikotynizm

1
 Zadanie
2
 Zadanie

3
 Zadanie

4
 Zadanie

Akoholizm i nikotynizm są chorobami społecznymi. Nie dość, że są to schorzenia przewlekłe i trudno wyleczalne, to co gorsza stanowią problem dla całego społeczeństwa. Zachowanie osóby regularnie spożywających akohol ma negatywny pływ na osoby z otoczenia alkoholika. Najbardziej cierpi rodzina, która ma największy kontakt z osobą pijącą. Akoholicy uprzykrzają życie także osobom obcym, np. urządzając afery w sklepach, na przystankach czy niemile odnosząc się do przechodniów. Nikotyznim również ma wpływ na społeczeństwo, ponieważ osoby przebywające w otoczeniu palacza również palą papierosy, ale biernie. Bierne palenie powoduje niemniej negatywne skutki na organizm człowieka jak czynne palenie. Podsumowując, zarówno akoholizm, jak i nikotynizm są chorobami społecznymi, ponieważ mają one duży wpływ na społeczeństwo. 

DYSKUSJA
Informacje
Ciekawa Biologia 2
Autorzy: Ewa Kłos, Wawrzyniec Kofta, Mariola Kukier-Wyrwicka, Hanna Werblan-Jakubiec
Wydawnictwo: WSiP
Rok wydania:
Autor rozwiązania
user profile image

Monika

3060

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Mnożenie pisemne
  1. Czynniki zapisujemy jeden pod drugim wyrównując do prawej.

    mnozenie1
     
  2. Mnożymy cyfrę jedności drugiego czynnika przez wszystkie cyfry pierwszego czynnika, a otrzymany wynik zapisujemy pod kreską, wyrównując do cyfry jedności. Gdy przy mnożeniu jednej z cyfr drugiego czynnika przez jedności, dziesiątki i setki drugiego czynnika wystąpi wynik większy od 9, to cyfrę jedności tego wyniku zapisujemy pod kreską, natomiast cyfrę dziesiątek przenosimy do dziesiątek lub setek i dodajemy go do wyniku następnego mnożenia.

    W naszym przykładzie:
    4•3=12 , czyli 2 wpisujemy pod cyframi jedności, a 1 przenosimy do dziesiątek, następnie: 4•1=4, ale uwzględniamy przeniesioną 1, czyli mamy 4+1=5 i 5 wpisujemy pod cyframi dziesiątek, następnie mamy 4•1=4 i 4 wpisujemy pod cyframi setek.

    mnozenie2
     
  3. Mnożymy kolejną cyfrę drugiego czynnika przez wszystkie cyfry pierwszego czynnika, a otrzymamy wynik zapisujemy pod poprzednim, wyrównując do cyfry dziesiątek.

    W naszym przykładzie:
    1•3=3 i 3 zapisujemy pod cyframi dziesiątek, następnie 1•1=1 i 1 wpisujemy pod cyframi setek, oraz 1•1=1 i 1 wpisujemy pod cyframi tysięcy.

    mnozenie3
     
  4. Po wykonaniu mnożeń, otrzymane dwa wyniki dodajemy do siebie według zasad dodawania pisemnego.

    mnozenie4
     
  5. W rezultacie wykonanych kroków otrzymujemy wynik mnożenia pisemnego. Iloczyn liczby 113 oraz 14 wynosi 1572.

Najmniejsza wspólna wielokrotność (nww)

Najmniejsza wspólna wielokrotność (NWW) dwóch liczb naturalnych to najmniejsza liczba naturalna będąca wielokrotnością zarówno jednej liczby, jak i drugiej.

Przykłady:

  • Najmniejszą wspólną wielokrotnością liczb 3 i 5 jest: 15.
    1. Wypiszmy wielokrotności liczby 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...;
    2. Wypiszmy wielokrotności liczby 5: 5, 10, 15, 20, 25, 30, 35, ...;
    3. Wśród wielokrotności liczby 3 i liczby 5 szukamy najmniejszej liczby, która jest zarówno wielokrotnością 3 i 5. Jest to 15.
  • Najmniejszą wspólną wielokrotnością liczb 4 i 6 jest: 12.
    1. Wypiszmy wielokrotności liczby 4: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, ...;
    2. Wypiszmy wielokrotności liczby 6: 6, 12, 18, 24, 30, 36, 42, 48, ...;
    3. Wśród wielokrotności wyżej wypisanych szukamy najmniejszej liczby, która jest zarówno wielokrotnością 4 i 6, widzimy że jest to 12.
Zobacz także
Udostępnij zadanie