Przeczytaj poniższy tekst i przeanalizuj fotografię, a następnie odpowiedz na pytania 4.53 gwiazdek na podstawie 17 opinii
  1. Gimnazjum
  2. 3 Klasa
  3. Biologia

Przeczytaj poniższy tekst i przeanalizuj fotografię, a następnie odpowiedz na pytania

1
 Zadanie

2
 Zadanie

UWAGA! Oglądasz stare wydanie książki. Kliknij tutaj, aby zobaczyć najnowsze.

a) ponieważ posiada szerokie zęby, którymi dokładnie rozciera rośliny, posiada cztero komorowy żołądek zdolny do trawienia celulozy 

b) Żołądek przeżuwaczy składa się z czterech komór. W pierwszej komorze znadują się bakterie i pierwotniaki odpowiedzialne za rozkład celulozy budującej ściany komórkowe roślin

c)

- wystająca górna chwytliwa warga 

- zęby typowe dla przeżuwaczy

- żołądek typowy dla przeżuwaczy 

- dłuższe jelita 

DYSKUSJA
user avatar
Arek

11 kwietnia 2018
Dzięki
user avatar
Aga

25 marca 2018
Dzięki za pomoc
user avatar
Kinga

23 listopada 2017
Dzięki :)
user avatar
Małgosia

23 września 2017
dzięki!!!!
klasa:
Informacje
Autorzy: Monika Jaworska, Jolanta Pawłowska, Jacek Pawłowski, Monika Zaleska
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile

Korepetytor

Wiedza
Kwadrat

W kwadracie: 

  • wszystkie boki mają jednakową długość

  • wszystkie kąty wewnętrzne są kątami prostymi (mają miary wynoszące 90°)

  • przekątne mają jednakowe długości, przecinają się w połowie i są prostopadłe

Wzór na pole kwadratu

`P=a*a=a^2` 

`a`  - długość boku kwadratu


Uwaga!

Każdy kwadrat jest prostokątem.

Porównywanie ułamków dziesiętnych

Aby ustalić, który z dwóch ułamków dziesiętnych jest większy, wystarczy porównać kolejno rzędy, zaczynając od najwyższego. Oznacza to, że porównujemy kolejno cyfry z których zbudowany jest ułamek dziesiętny, czyli zaczynamy od cyfr części całkowitej, a później przechodzimy to porównywania cyfr części dziesiętnych.

W praktyce porównywanie ułamków dziesiętnych odbywa się następująco:
  • Najpierw porównujemy części całkowite, jeżeli nie są równe, to mniejszy jest ułamek o mniejszej części całkowitej;

  • Jeżeli obie części całkowite są równe, to porównujemy ich części dziesiętne. Jeżeli części dziesiętne nie są równe, to mniejszy jest ułamek o mniejszej części dziesiętnej;

  • Gdy części dziesiętne są równe, to porównujemy ich części setne, tysięczne itd., aż do uzyskania odpowiedzi.

  Zapamiętaj

Gdy na końcu ułamka dziesiętnego dopisujemy lub pomijamy zero, to jego wartość się nie zmienia.

Przykłady:
$$0,34=0,340=0,3400=0,34000=...$$
$$0,5600=0,560=0,56$$

W związku z powyższą uwagą, jeżeli w czasie porównywania ułamków w którymś zabraknie cyfr po przecinku, to należy dopisać odpowiednią liczbę zer.
 

Przykład: Porównajmy ułamki 5,25 i 5,23.
Przed porównywaniem ułamków wygodnie jest zapisać porównywane liczby jedna pod drugą, ale tak by zgadzały się rzędy, czyli przecinek pod przecinkiem.

porownanie1
Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 5>3, zatem ułamek 5,25 jest większy od 5,23. Zatem 5,25>5,23.

Przykład: Porównajmy ułamki 0,8 i 0,81.
Zapisujemy ułamki jeden pod drugim, tak aby zgadzały się rzędy, czyli przecinek pod przecinkiem. Ponadto dopisujemy 0 w ułamku 0,8.

porownanie2

Widzimy, że w porównywanych ułamkach części jedności są takie same, części dziesiętne także są równe, natomiast w rzędzie części setnych 0<1, zatem ułamek 0,81 jest większy od 0,8. Zatem 0,81>0,8.

Zobacz także
Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom