Omów znane Ci choroby układu krążenia. 4.6 gwiazdek na podstawie 5 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Biologia

Omów znane Ci choroby układu krążenia.

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie
  • miażdżyca - polega na odkładaniu się w ścianach naczyń krwionośnych tzw. blaszek miażdżycowych złożonych głównie cholesterolu, ale także innych związków tłuszczowych. Powoduje to zwężenie światła naczyń i w konsekwencji utrudnia przepływ krwi.
  • choroba wieńcowa - polega na odkładaniu się w ścianach naczyń wieńcowych (czyli tych oplatających serce) tzw. blaszek miażdżycowych złożonych głównie cholesterolu, ale także innych związków tłuszczowych. Powoduje to zwężenie światła naczyń i w konsekwencji utrudnia przepływ krwi. Może nawet doprowadzić do całkowitego zaniku światła i całkowite uniemożliwienie przepływu krwi. W konsekwencji może dojść do zawału serca, czyli obumarcia części serca.
  • nadciśnienie tętnicze - choroba ta objawia się stale wysokim ciśnieniem krwi - powyżej 140/90 mm Hg. Dochodzi do niej w momencie, kiedy krew płynie przez zwężone naczynia krwionośne lub gdy serce pompuje krew zbyt szybko.
DYSKUSJA
Informacje
Puls życia 2
Autorzy: Elżbieta Mazurek, Joanna i Jacek Pawłowscy, Anna Zdziennicka
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Monika

2766

Nauczyciel

Masz wątpliwości co do rozwiązania?

Wiedza
Wielokrotności

Wielokrotność liczby to dana liczba pomnożona przez 1,2,3,4,5 itd.
Inaczej mówiąc, wielokrotność liczby n to każda liczba postaci 1•n, 2•n, 3•n, 4•n, 5•n ...

Przykłady:

  • wielokrotnością liczby 4 jest:
    • 4, bo $$4=1•4$$
    • 8, bo $$8=2•4$$
    • 12, bo $$12=3•4$$
    • 16, bo $$16=4•4$$
    • 20, bo $$20=5•4$$
       
  • wielokrotnością liczby 8 jest:
    • 8, bo $$8=1•8$$
    • 16, bo $$16=2•8$$
    • 24, bo $$24=3•8$$
    • 32, bo $$32=4•8$$
    • 40, bo $$40=5•8$$
Odejmowanie ułamków zwykłych
  1. Odejmowanie ułamków o jednakowych mianownikach – odejmujemy liczniki, a mianownik pozostawiamy bez zmian.

    Przykład:

    • $$5/6-2/6= 3/6= {3÷3}/{6÷3}=1/2$$

      Uwaga

    Gdy w wyniku odejmowania ułamków otrzymamy ułamek niewłaściwy, warto wyłączyć z niego całości.
    Często ułamek otrzymany w wyniku można skrócić, czyli podzielić licznik i mianownik przez tę samą liczbę.

  2. Odejmowanie ułamków o różnych mianownikach – najpierw sprowadzamy je do wspólnego mianownika (czyli tak je rozszerzamy lub skracamy, aby otrzymać w mianowniku taką samą liczbę), następnie wykonujemy odejmowanie.

    Przykład:

    • $$3/{10}- 1/5=3/{10}- {1•2}/{5•2}=3/{10}- 2/{10}=1/{10}$$
       
  3. Odejmowanie liczb mieszanych, których składniki ułamkowe mają takie same mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, a następnie wykonujemy odejmowanie ułamków o jednakowych mianownikach.

      Przykład:

      $$2 1/3- 1 1/3= {2•3+1}/3-{1•3+1}/3=7/3-4/3=3/3=1$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które mają identyczne mianowniki.

      Przykład:

      $$2 1/3- 1 1/3= 2 + 1/3- 1 - 1/3= 2 – 1 + 1/3- 1/3= 1 + 0 = 1$$
       
  4. Odejmowanie liczb mieszanych, których składniki ułamkowe mają różne mianowniki.

    • I sposób – zamieniamy liczby mieszane na ułamki niewłaściwe, następnie sprowadzamy je do wspólnego mianowniku, a potem wykonujemy odejmowanie.

      Przykład:

      $$2 1/3- 1 1/2= {2•3+1}/3-{1•2+1}/2=7/3-3/2={7•2}/{3•2}-{3•3}/{2•3}={14}/6-9/6=5/6$$
    • II sposób – oddzielnie odejmujemy składniki całkowite i oddzielnie składniki ułamkowe, które musimy najpierw sprowadzić do wspólnego mianownika.

      Przykład:

      $$2 1/2- 1 1/3= 2 + 1/2- 1 - 1/3= 2 - 1 + 1/2-1/3= 1 +{1•3}/{2•3}-{1•2}/{3•2}= 1 + 3/6- 2/6= 1 + 1/6= 1 1/6$$
 
Zobacz także
Udostępnij zadanie