Puls życia 2 (Podręcznik, Nowa Era)

Opisz budowę ucha środkowego 4.57 gwiazdek na podstawie 7 opinii
  1. Gimnazjum
  2. 2 Klasa
  3. Biologia

Opisz budowę ucha środkowego

1
 Zadanie

2
 Zadanie
3
 Zadanie
4
 Zadanie

Głównei elementy ucha środkowego to jama bębenkowa i trąbka słuchowa

W jamie bębenkowej mieszczą się trzy kosteczki słuchowe ( młoteczek, kowadełko i strzemiączko - połączone za pomocą stawów i więzadełek) Młoteczek jest przyrośnięty do błony będenkowej, a strzemiączko przylega do ucha wewnętrznego. 

Trąbka słuchowa to przewód łączący jamę bębenkową z gardłem. Umożliwia ona utrzymanie jednakowego ciśnienia powietrza po obu stronach błony będenkowej. 

DYSKUSJA
Informacje
Puls życia 2
Autorzy: Elżbieta Mazurek, Joanna i Jacek Pawłowscy, Anna Zdziennicka
Wydawnictwo: Nowa Era
Rok wydania:
Autor rozwiązania
user profile image

Korepetytor

Masz wątpliwości co do rozwiązania?

Ostatnie 7 dni na Odrabiamy w liczbach...
ROZWIĄZALIŚMY0ZADAŃ
zadania
wiadomości
ODPOWIEDZIELIŚMY NA0WIADOMOŚCI
NAPISALIŚCIE0KOMENTARZY
komentarze
... i0razy podziękowaliście
Autorom
Wiedza
Równość ułamków

Każdy ułamek można zapisać na nieskończoną ilość sposobów. Dokonując operacji rozszerzania lub skracania otrzymujemy ułamek, który jest równy ułamkowi wyjściowemu.

Pamiętajmy jednak, że każdy ułamek można rozszerzyć, jednak nie każdy ułamek można skrócić. Ułamki, których nie da się już skrócić nazywamy ułamkami nieskracalnymi.

  • Rozszerzanie ułamków - mnożymy licznik i mianownik przez tą sama liczbę różną od zera; ułamek otrzymamy w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Rozszerzmy ułamek $$3/5$$ przez 3, czyli licznik i mianownik mnożymy przez 3:

      $$3/5=9/{15}={27}/{45}=...$$
       
  • Skracanie ułamków - dzielimy licznik i mianownik przez tą samą liczbę różną od zera; ułamek otrzymany w ten sposób jest równy ułamkowi wyjściowemu.

    Przykład:

    • Skróćmy ułamek $$8/{16}$$ przez 2, czyli licznik i mianownik dzielimy przez 2:

      $$8/{16}=4/8=2/4=1/2$$ 
 
Mnożenie ułamków dziesiętnych przez 10, 100, 1000...

Aby pomnożyć ułamek dziesiętny przez 10, 100, 1000 itd. należy przesunąć przecinek w prawo o tyle miejsc ile jest zer w liczbie przez którą mnożymy (czyli w 10, 100, 1000 itd.).

Przykłady:

  • $$0,253•10= 2,53$$ ← przesuwamy przecinek o jedno miejsce w prawo
  • $$3,007•100= 300,7$$ ← przesuwamy przecinek o dwa miejsca w prawo
  • $$0,024•1000= 24$$ ← przesuwamy przecinek o trzy miejsca w prawo
Zobacz także
Udostępnij zadanie