Wyznaczanie dziedziny wyrażen wymiernych - matura-rozszerzona - Baza Wiedzy

Wyznaczanie dziedziny wyrażeń wymiernych

W tym temacie zajmiemy się prostymi wyrażeniami wymiernymi. Nazwa dość obco brzmi, ale tak naprawdę temat jest dość prosty.

Czym więc jest to "wyrażenie wymierne"? Jest to funkcja, która jest wynikiem dzielenia dwóch wielomianów. Proste przykłady:

$${1}/{x}$$, $${x-2}/{x+5}$$, $${x^3+5}/{x^2+10x+2}$$, $${x^100}/{x+1}$$.

Będziemy się nimi głębiej zajmowali w następnym temacie: na razie postaramy się jednynie odpowiedzieć na pytanie o dziedzinę takiej funkcji. Wielomiany miały oczywiście w dziedzinie wszystkie liczby rzeczywiste, bo składały się tylko z dodawania, mnożenia i podnoszenia do potęgi (czyli tak naprawdę tylko dodawania). Tutaj chodzi nam także dzielenie, które podlega jednemu obostrzeniu: nie można dzielić przez 0. Cały problem sprowadza się więc do tego, żeby w mianowniku takiego wyrażenia nie było zera, czyli z dziedziny musimy wyłączyć pierwiastki wielomianów będących w mianowniku.

Przykład: dziedziną $${1}/{x}$$ jest zbiór wszystkich liczb rzeczywistych bez zera, bo zero jest właśnie pierwsiastkiem wielomianu będącego w mianowniku.

Inny przykład: $${x^3+5}/{x^2-10x+25}$$. Tutaj możemy podstawić wszystko oprócz 5, bo właśnie 5 jest pierwiastkiem funkcji kwadratowej będącej w mianowniku.

Ostatni przykład: $${1}/{(x-3)(x+2)(x+10)}$$. Tutaj już z górki: wyraźnie widać, że pierwiastkami mianownika są liczby 3, -2 i -10, więc dziedziną jest zbiór liczb rzeczywistych bez tych trzech liczb.
 

Ćwieczenie 1. Znaleźć dziedzinę następujących wyrażeń wymiernych:

a) $${x^5 + 10x^4 - 9x^3 + 2x - 2}/{x^2 - 6x + 9}$$

b) $${x^10}/{(x-1)(x-2)(x-3)(x-4)(x-5)}$$

c) $${x - 5}/{(x-1)(x+2)} + {x + 5}/{(x+1)(x-2)}$$

a) dziedziną są wszystkie liczby rzeczywiste oprócz tych miejsc, gdzie zeruje się licznik ułamka - podójnym pierwiastkiem funkcji $$x^2 - 6x + 9$$ jest liczba $$x = $$ (ponieważ $$x^2 - 6x + 9 = (x-3)^2$$ - można to zauważyć korzystając ze wzorów Viete'a).
Wynika z tego, że dziedziną są wszystkie liczby rzeczywiste oprócz $$3$$.

b) Ponownie, musimy zbadać, kiedy zeruje się mianownik. W tym przypadku mamy podane od razu jego pierwiastki: są to liczb $$1,2,3,4,5$$, więc dziedziną wyrażenia są wszystkie liczby rzeczywiste bez tych pięciu.

c) Tutaj jest już trudniej, ponieważ mamy dwa wyrażenia. Możemy oczywiście je dodać i otrzymać jedno, ale nie ma to większego sensu: wystarczy rozpatrzyć miejsca zerowania się mianowników obu ułamków osobno.
W pierwszym z nich następuje to w miejscach $$x = 1$$ i $$x = -2$$, w drugim: $$x = -1$$ i $$x = 2$$. Wiemy więc, że dziedziną tego wyrażenia jest zbiór wszystkich liczb rzeczywistych wyłączając $$-2, -1, 1, 2$$.

Spis treści

Rozwiązane zadania
Skorzystaj z tego, że ...

Przyjmujemy, że:

 

 

 

 

 

  

 

Wykaż, że dany ciąg jest arytmetyczny

Ciąg jest arytmetyczny, jeśli różnica wyrazu o indeksie (n+1) i n jest stała (jest to r, czyli różnica ciągu arytmetycznego)

 

 

 

 `-4` 

 

 

 

Udało nam się znaleźć r, więc ten ciąg jest arytmetyczny. 

 

 

 

Można to także uzasadnić, korzystając z twierdzenia 2 ze strony 175. 

Musimy sprawdzić następujący warunek:

 `(a_(n+1)+a_(n-1))/2` 

 

 `((-4(n+1)+17)+(-4(n-1)+17))/2=` 

 

 `(-8n+34)/2=-4n+17=a_n`        

Oblicz.

 

 

 

 

 

 

Rozwiąż równanie.

a)

 

 

 

 

Możemy zapisać krócej:

 


b)

 

 

 

 

 


c)

 

 

 

 

 (kolor zielony)

 (kolor pomarańczowy)

 (kolor fioletowy)

 

Pomocniczo:

 

 

 

 

Odp.  

Łatwiej możemy zapisać: 

 


d)

 

 

 (kolor zielony)

 (kolor pomarańczowy)

 (kolor fioletowy)

Pomocniczo:

 

 

 

 

 

 

Odp.  

 

Które wyrazy ciągu (an) należą ...

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 

     

 

 

 

 

 

 

  

  

 

     

 

 

` `

Wyznacz zbiór rozwiązań...

 

 

 

  ` `

 

 

   - zbiór rozwiązań

 

 

 

 

 

 

 

 

 

 

  - zbiór rozwiązań

 

 

 

 

 

 

 

 

 

 

Rozważmy stożek o promieniu podstawy równym...

Rozważmy przekrój osiowy stożka i okrąg w niego wpisany i na nim opisany - będą one

odpowiadały stożkowi i kulom: wpisanej i opisanej na tym stożku.

Ze wzoru na promień okręgu wpisanego w trójkąt będziemy chcieli obliczyć  

Obliczamy pole  

 

Obliczamy długość przeciwprostokątnej      

 

 

Obliczamy  

      

Analogicznie, ze wzoru na promień okręgu opisanego na trójkącie obliczamy   

 

 

Obliczamy  

 

Obliczamy granicę:

     

 

 

Wyprowadź wzór

{premium}

 

 

 

 

   

Wykaż, że proste zawierające wysokości trójkąta...

Dowód:

Trójkąt ABC są rozwartokątny. Punkt D jest punktem ptzrecięcia dwóch wysokości (które są poza trójkątem).

Trójkąt BCD jest ostrokątny, więc jaego wysokości przecinają się w jednym punkcie. Wysokość trójkąta ABC wychodząca z wierzchołka A pokrywa się z wysokością trójkąta BCD wychodzącą z wierzchołka D.

Więc wszystkie wysokości trójkąta ABC przecinają się w punkcie D.

Dane są funkcje ...