Wektory - matura-rozszerzona - Baza Wiedzy

Współrzędne wektora

Mając dane współrzędne końców wektora możemy wyznaczyć jego współrzędne: opisują one po prostu koniec wektora przy założeniu, że jego początek jest zaczepiony w punkcie $$(0,0)$$.

Jeśli początek leży w punkcie $$A = (x_p,y_p)$$, a koniec to punkt $$B = (x_k, y_k)$$, to współrzędne wektora wyznacza wzór:

$${AB}↖{→} = [x_p-x_k, y_p-y_k]$$
 

Dodawanie, odejmowanie i mnożenie wektorów przez liczbę

Dodawanie wektorów można interpretować geometrycznie na równoważne sobie sposoby:

1) W końcu jednego wektora zaczepiamy drugi - ich suma jest wtedy wektorem prowadzącym od początku pierwszego do końca drugiego.

1 dodawanie

2) Jeśli oba wektory są zaczepione w tym samym punkcie, ich suma to przekątna równoległoboku utworzonego przez nie (rysunek).

2 dodawanie

Jeśli mamy natomiast dodać je analitycznie, wystarczy po prostu dodać ich odpowiednie współrzędne. Zakładając, ze $${v}↖{→} = [v_a, v_b]$$, a $${u}↖{→} = [u_a, u_b]$$, współrzędne wektora będącego ich sumą: $${t}↖{→} = {v}↖{→} + {u}↖{→} $$ są równe $${t}↖{→} = [u_a + v_a,u_b + v_b]$$.

Odejmowanie wektora to po prostu dodawanie wektora o przeciwnym zwrocie:

mając różnicę $${t}↖{→} = {v}↖{→} - {u}↖{→} $$ możemy ją zapisać jako $${t}↖{→} = {v}↖{→} + (-{u}↖{→}) $$. Wektor $$(-{u}↖{→})$$ to po prostu wektor $${u}↖{→}$$ przeciwnie skierowany (przed obiema współrzędnymi dostawiamy minus).

Mnożenie wektora $${v}↖{→}$$ przez liczbę $$a$$ to w ujęciu geometrycznym dodanie do siebie $$a$$ razy wektora $${v}↖{→}$$, zaś w ujęciu analitycznym - pomnożenie przez liczbę $$a$$ obu jego współrzędnych.
3 mnożenie

Rozkładanie wektorów

Każdy wektor można rozłożyć na sumę kilku wektorów. Najczęściej, chociaż nie zawsze, opłaca się brać pod uwagę sumę wektorów równoległych do osi współrzędnych. W ujęciu geometrycznym są to boki prostokąta, którego przekątną jest wektor; w ujęciu analitycznym: wektory o współrzędnych $${v_x}↖{→} = [a, 0]$$ i $${v_y}↖{→} = [0, b]$$ jeśli wektor $${v}↖{→} = [a, b]$$.

4 rozkładanie
 

Wektory jako przesunięcie wykresu

Wektor jest często używany jako wielkość opisująca przesunięcie. Można mówić o przesunięciu dowolnego obiektu leżącego w przestrzeni: na przykład wykresu funkcji.

5 przesuniecie wykresu

Widać, że przesunięcie wykresu nie zależy od tego, w którym miejscu zaczepimy wektor. Jak opisać takie przesunięcie?

Załóżmy, że mamy funkcję $$y = f(x)$$ i chcemy jej wykres przesunąć o wektor $${v}↖{→} = [a,b]$$. Aby to zrobić, rozłóżmy $${v}↖{→}$$ na wektory składowe równoległe do osi i przesuńmy wykres przez każdy z nich oddzielnie (suma przesunięć będzie się równała przesunięciu przez wektor sumy).

Przesuwając wykres w pionie zmieniamy tak naprawdę jedynie wyraz wolny: jeśli na przykład $${v_y}↖{→} = [0, b]$$, to nowa funkcja $$f_2(x)$$ będzie równa $$f_2(x) = f(x) + b$$.

Zastanówmy się więc, co tak naprawdę robimy przesuwając wykres w poziomie - załóżmy, że w prawo, czyli o wektor $${v_x}↖{→} = [a, 0]$$ gdzie $$a$$ > $$0$$. Każdemu $$x$$-owi przyporządkowujemy wtedy wartość $$x$$-a leżącego o $$a$$ bliżej, np. punkt $$x=3$$ dostał wartość punktu $$x=3-a$$. Nowa funkcja będzie więc miała postać $$f_2(x) = f(x-a)$$.

Łącząc te dwie zmiany dowiadujemy się, że funkcja $$y = f(x)$$ przesunięta o wektor $${v}↖{→} = [a,b]$$ będzie miała postać $$y = f(x-a)+b$$.

Spis treści

Rozwiązane zadania
Cena brutto komputera jest równa cenie netto plus 23% podatku

 

Obliczamy cenę brutto komputera: 

 

 

Obliczamy, jaki procent ceny {premium}brutto stanowi podatek VAT: 

   

 

 

 

 

n - cena netto tego komputera

 

 

 

 

 

 

 

Obliczamy, ile procent ceny brutto stanowi cena netto

 

 

 

 

n - cena netto

b - cena brutto

 

 

 

 

 

 

 

 

Obliczamy cenę brutto komputera, gdyby jego cena netto została podniesiona o 100 zł (czyli gdyby cena netto wynosiła 2100+100=2200 zł)

Zostało to już obliczone w podpunkcie a) - cena brutto tego komputera wynosiłaby wtedy 2706 zł. 

Rzucamy raz sześcienną kostką

 

Jeśli wyrzucimy 1, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 2 wyniki - orzeł lub reszka. 

Jeśli wyrzucimy 2, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 4 wyniki - na każdym z dwóch miejsc możemy postawić orła lub reszkę (2∙2=4).

Jeśli wyrzucimy 3, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 8 wyników - na każdym z trzech miejsc możemy postawić orła lub reszkę (2∙2∙2=8).

Jeśli wyrzucimy 4, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 16 wyników - na każdym z czterech miejsc możemy postawić orła lub reszkę (2∙2∙2∙2=16).

Jeśli wyrzucimy 5, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 32 wyników - na każdym z pięciu miejsc możemy postawić orła lub reszkę (2∙2∙2∙2∙2=32).

Jeśli wyrzucimy 6, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 64 wyników - na każdym z sześciu miejsc możemy postawić orła lub reszkę (2∙2∙2∙2∙2∙2=64).

 

Liczba wszystkich możliwości jest więc równa:

 

 

 

 

Wyniki doświadczenia rozpoczynające się od liczby nieparzystej to:

Jeśli wyrzucimy 1, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 2 wyniki - orzeł lub reszka. 

Jeśli wyrzucimy 3, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 8 wyników - na każdym z trzech miejsc możemy postawić orła lub reszkę (2∙2∙2=8).

Jeśli wyrzucimy 5, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 32 wyników - na każdym z pięciu miejsc możemy postawić orła lub reszkę (2∙2∙2∙2∙2=32).

Ilość wyników nieparzystych:

 

 

Pozostałe wyniki rozpoczynają się więc od liczby parzystej, czyli ich ilość jest równa:

 

 

Wyników zaczynających się od liczby parzystej jest więc rzeczywiście 2 razy więcej niż tych zaczynających się od liczby nieparzystej:

 

 

Dla jakich wartości parametru k...

 

Zauważmy, że wraz ze wzrostem n-ów mianownik będzie rosnąc. Jeżeli w liczniku będzie liczba dodatnia to wartość wyrażenia będzie maleć. Zatem:

 

 

 

 

Zauważmy, że:

 

będzie maleć gdy k będzie dodatnie, gdyż wraz ze wzrostem n-ów wartość wyrażenia będzie maleć. A więc:

 

Sprawdź, czy wektory ...

Wektory u i v mają ten sam kierunek i zwrot gdy istnieje dodatnia liczba a taka, że u=av.

 

 

 

 

 

Wektory u i v mają wspólny kierunek, lecz przeciwny zwrot. {premium}

 

 

 

 

 

 

Wektory u i v mają wspólny kierunek i zwrot.

 

 

 

 

 

 

 

 

Takie a nie istnieje.

Wektory mają różne zwroty i kierunki.

 

       

  

 
 

 

  

 

 

Istnieje takie a, czyli wektory u i v mają zgodne zwroty i kierunki.  

Liczba r jest pierwiastkiem wielomianu W(x)...

 

Obliczamy:

 

Z twierdzenia Bezouta wiemy, że liczba  jest pierwiastkiem wielomianu  wtedy i tylko wtedy,

gdy  

Sprawdźmy, dla jakiego  tak jest.

 

 

 

 

Wówczas wielomian  ma postać:

 

Wiemy, że liczba  jest pierwiastkiem wielomianu  

Oznacza to, że wielomian  jest podzielny przez dwumian  

Wykonajmy dzielenie  algorytmem Hornera:

         
         
         

 

W wyniku dzielenia wielomianu  przez dwumian  

otrzymaliśmy iloraz  

Wielomian  możemy zapisać następująco:

 

{premium}

 

Szukamy teraz pierwiastków trójmianu  Jest to trójmian kwadratowy, więc obliczamy:

 

 

Odp. Pozostałe pierwiastki wielomianu  to:  


 

Obliczamy:

 

 

Z twierdzenia Bezouta wiemy, że liczba  jest pierwiastkiem wielomianu  wtedy i tylko wtedy,

gdy  

Sprawdźmy, dla jakiego  tak jest.

 

 

 

 

Wówczas wielomian  ma postać:

 

Wiemy, że liczba  jest pierwiastkiem wielomianu  

Oznacza to, że wielomian  jest podzielny przez dwumian  

Wykonajmy dzielenie  algorytmem Hornera:

          
         
         

 

W wyniku dzielenia wielomianu  przez dwumian  

otrzymaliśmy iloraz  

Wielomian  możemy zapisać następująco:

 

Niech  

 

Szukamy teraz pierwiastków trójmianu  Jest to trójmian kwadratowy, więc obliczamy:

 

 

Odp. Pozostałe pierwiastki wielomianu  to:  


 

Obliczamy:

 

Z twierdzenia Bezouta wiemy, że liczba  jest pierwiastkiem wielomianu  wtedy i tylko wtedy,

gdy  

Sprawdźmy, dla jakiego  tak jest.

 

 

 

 

 

Wówczas wielomian  ma postać:

 

Wiemy, że liczba  jest pierwiastkiem wielomianu  

Oznacza to, że wielomian  jest podzielny przez dwumian  

Wykonajmy dzielenie  algorytmem Hornera:

         
          
         

 

W wyniku dzielenia wielomianu  przez dwumian  

otrzymaliśmy iloraz  

Wielomian  możemy zapisać następująco:

 

 

Szukamy teraz pierwiastków trójmianu  Jest to trójmian kwadratowy, więc obliczamy:

 

 

Odp. Pozostałe pierwiastki wielomianu  to:  


 

Obliczamy:

 

Z twierdzenia Bezouta wiemy, że liczba  jest pierwiastkiem wielomianu  wtedy i tylko wtedy,

gdy  

Sprawdźmy, dla jakiego  tak jest.

 

 

 

 

 

Wówczas wielomian  ma postać:

 

Wiemy, że liczba  jest pierwiastkiem wielomianu  

Oznacza to, że wielomian  jest podzielny przez dwumian  

Wykonajmy dzielenie  algorytmem Hornera:

         
         
         

 

W wyniku dzielenia wielomianu  przez dwumian  

otrzymaliśmy iloraz  

Wielomian  możemy zapisać następująco:

 

Niech  

 

Szukamy teraz pierwiastków trójmianu  Jest to trójmian kwadratowy, więc obliczamy:

 

 

Odp. Pozostałe pierwiastki wielomianu  to:  

Wyznacz punkty

 

  

 

 

  

 

Pole obszaru ograniczonego osiami układu i wykresem funkcji to {premium}pole trójkąta prostokątnego o przyprostokątnych 9 i 3:

 

 

 

 

 

 

 

 

Pole obszaru ograniczonego osiami układu i wykresem funkcji to pole trójkąta prostokątnego o przyprostokątnych 14 i 8:

 

 

 

 

 

 

 

Pole obszaru ograniczonego osiami układu i wykresem funkcji to pole trójkąta prostokątnego o przyprostokątnych 2,5 i 7,5:

 

 

 

 

Nie trzeba pamiętać podanych powyżej wzorów. Wystarczy rozumieć, co oznacza punkt przecięcia z daną osią.

Zauważmy, że jeśli punkt przecina oś OX, to jego druga współrzędna jest równa 0. Możemy więc podstawić y=0 i wyliczyć x.

Zróbmy to dla kolejnych przykładów.

 

 

 

 

  

 

 

 

 

 

   

   

 

 

 

 

 

 

 

Zauważmy, że jeśli punkt przecina oś OY, to jego pierwsza współrzędna jest równa 0. Możemy więc podstawić x=0 i wyliczyć y.

Zróbmy to dla kolejnych przykładów.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dla jakich wartości parametru a

Liczba 5 ma być dwukrotnym pierwiastkiem wielomianu w. Z powyższej postaci widać, że liczba 5 jest już jednokrotnym pierwiastkiem wielomianu w. Aby była dwukrotnym pierwiastkiem wielomianu w, musi być jednokrotnym pierwiastkiem wielomianu u: 

 

Musimy jeszcze sprawdzić, czy dla a=6 liczba 5 jest rzeczywiście tylko jednokrotnym pierwiastkiem wielomianu u: 

 

Liczba 5 jest jednokrotnym pierwiastkiem wielomianu w, jest więc dwukrotnym pierwiastkiem wielomianu w. Możemy zapisać odpowiedź:

 

 

 

 

 

Liczba 3 ma być dwukrotnym pierwiastkiem wielomianu w. Z powyższej postaci widać, że liczba 3 jest już jednokrotnym pierwiastkiem wielomianu w. Aby była dwukrotnym pierwiastkiem wielomianu w, musi być jednokrotnym pierwiastkiem wielomianu u: 

 

Otrzymaliśmy dwie wartości a. Musimy sprawdzić, czy dla tych wartości liczba 3 jest rzeczywiście jednokrotnym pierwiastkiem wielomianu u:

W tym przypadku liczba a jest jednokrotnym pierwiastkiem wielomianu u.

 

W tym przypadku liczba a jest jednokrotnym pierwiastkiem wielomianu u.

 

W obu przypadkach liczba 3 jest jednokrotnym pierwiastkiem wielomianu w, jest więc dwukrotnym pierwiastkiem wielomianu w. Możemy zapisać odpowiedź:

 

 

 

 

Jeśli liczba -½ ma być dwukrotnym pierwiastkiem wielomianu w, to wielomian w musi być iloczynem wyrażenia (x+½)² oraz pewnego innego wyrażenia. To drugie wyrażenie musi być stopnia drugiego (ponieważ wielomian w jest stopnia 4, a wielomian (x+½)²  jest stopnia 2, a 4-2=2). Możemy więc zapisać:

Wykonajmy działania i uporządkujmy powyższy wielomian ze względu na x:

 

Z drugiej strony z treści zadania wiemy, że wielomian w jest postaci:

 

Dwa wielomiany są równe, jeśli mają jednakowe współczynniki stojące przy tych samych potęgach, więc możemy zapisać:

Jedyną liczbą, która spełnia oba podkreślone warunki, jest a=2.

Parametry są więc liczbami:

Wtedy wielomian w(x) jest postaci:

Z równości oznaczonej gwiazdką możemy jednak zapisać ten wielomian w postaci iloczynowej i sprawdzić, że dla obliczonych wartości parametrów liczba -½ jest rzeczywiście tylko dwukrotnym pierwiastkiem wielomianu w:

Dla czynnika kwadratowego otrzymaliśmy inne niż -½ pierwiastki, więc możemy zapisać rozwiązanie:

 

 

 

 

Jeśli liczba -1 ma być trzykrotnym pierwiastkiem wielomianu w, to wielomian w musi być iloczynem wyrażenia (x+1)³ oraz pewnego innego wyrażenia. To drugie wyrażenie musi być stopnia pierwszego (ponieważ wielomian w jest stopnia 4, a wielomian (x+1)³  jest stopnia 3, a 4-3=1). Możemy więc zapisać:

Wykonajmy działania (korzystając przy tym ze wzoru skróconego mnożenia na sześcian sumy) i uporządkujmy powyższy wielomian ze względu na x:

 

Z drugiej strony z treści zadania wiemy, że wielomian w jest postaci:

Dwa wielomiany są równe, jeśli mają jednakowe współczynniki stojące przy tych samych potęgach, więc możemy zapisać:

Jedyną liczbą, która spełnia oba podkreślone warunki, jest a=2.

Parametry są więc liczbami:

Wtedy wielomian w(x) jest postaci:

Z równości oznaczonej gwiazdką możemy jednak zapisać ten wielomian w postaci iloczynowej i sprawdzić, że dla obliczonych wartości parametrów liczba -1 jest rzeczywiście tylko trzykrotnym pierwiastkiem wielomianu w:

Czwarty pierwistek wielomianu w to 2, więc liczba -1 jest trzykrotnym pierwiastkiem tego wielomianu. Możemy więc zapisać odpowiedź:

 

 

 

Uzasadnij równość, jeżeli...

 

 

 

 

 

 

 

 

 

Równość zachodzi.

 

 

 

 

 

 

 

Równość zachodzi.

 

 

 

 

 

 

 

 

 

 

Równość zachodzi.

 

 

 

 

 

 

 

 

 

 

Równość zachodzi.

 

 

 

 

 

 

 

 

 

Równość zachodzi.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Równość zachodzi.

Wykaż, że nie istnieje ...

 

 {premium}

 

 

 

   

 

    

Na jednej prostej zaznaczono

Najpierw obliczymy, ile jest trójkątów, których wierzchołki leżą w zaznaczonych punktach. 

Możemy wybrać 2 wierzchołki z górnej prostej i 1 wierzchołek z dolnej prostej lub wybrać 1 wierzchołek z górnej prostej oraz 2 wierzchołki z dolnej prostej. 

  

        

 

 

 

Teraz obliczymy, ile jest czworokątów, których wierzchołki leżą w zaznaczonych punktach. 

Musimy wybrać 2 wierzchołki z górnej prostej i 2 wierzcholki z dolnej prostej.