Wartość bezwzględna - matura-rozszerzona - Baza Wiedzy

Wartość bezwzględna

Ostatni temat w dziale równań i nierówności poświęcony jest wartości bezwzględnej - funkcji, którą poznaliśmy na samym początku, omawiając liczby rzeczywiste (wartość bezwzględna) .

Aby zabrać się do rozwiązywania takiego równania musimy przypomnieć sobie, czym właściwie była wartość bezwzględna. Dla przypomnienia: dostając liczbę dodatnią nic z nią nie robiła, dostając ujemną - zamieniała ją na dodatnią (czyli tak naprawdę "dostawiała" minusa przed nią). Na przykład:

$$|3| = 4$$
$$|-4| = -(-4) = 4$$

Równania z wartością bezwzględną mogą przybierać dwie postacie:
a) wartości bezwzględne występują obok siebie, np:
$$|x+3| + |x-2| = 6$$

b) wartość bezwzględna jest "zagnieżdżona" wewnątrz wartości bezwzględnej, np:
$$||x+1| - 2| = 3$$

Oczywiście te dwa typy mogą się łączyć w różnych konfiguracjach, warto jednak na początku omówić je na tych właśnie niezbyt zaawansowanych przykładach.

Zacznijmy od typu a), czyli równania $$|x+3| + |x-2| = 6$$.

Chcąc opuścić wartość bezwzględną musimy wiedzieć, jakiego znaku jest wyrażenie pod nią. Jako że musimy opuścić obie wartości bezwzględne naraz, musimy rozwiązywanie takiego równania rozbić na kilka przypadków.

Najpierw należy się zastanowić, dla jakich $$x$$-ów pierwsza i druga wartość bezwzględna będą dodatnie.

Pierwsza będzie dodatnia dla $$x$$ > $$-3$$, druga - dla $$x$$ > $$2$$. Obie będą więc dodatnie tylko wtedy, gdy $$x$$ > $$2$$.

Teraz zastanówmy się nad pozostałymi przypadkami. Jeśli $$2$$ >= $$x$$ > $$-3$$ - pierwsza będzie dodatnia, a druga ujemna. Jeżeli natomiast $$-3$$ >= $$x$$ - obie będą ujemne.

Opuśćmy zatem wartości bezwzględne dla przypadku 1 - obu dodatnich (jeśli liczba jest dodatnia, wartość bezwzględna nie zmienia jej znaku).

$$x+3 + x - 2 = 6$$
$$2x = 5$$
$$x = {5}/{2}$$

Uzyskaliśmy wynik, ale koniecznie trzeba sprawdzić, czy mieści się w naszym pierwszym przedziale. Nie wolno o tym zapominać - to bardzo częsty błąd w tego typu zadanich.

$${5}/{2}$$ > $$2$$

Okazuje się, że wynik mieści się w przedziale - uzyskaliśmy jedno rozwiązanie.

Czas na rozważenie kolejnych dwóch przypadków. Jeśli $$2$$ >= $$x$$ > $$-3$$, należy zmienić znak tylko drugiej wartości bezwzględnej, ponieważ kryła się pod nią liczba ujemna:

$$x+3 - x + 2 = 6$$
$$5 = 6$$

Jest to oczywista sprzeczność.

Trzeci przypadek $$-3$$ >= $$x$$ oznacza zmianę znaku obu wyrażeń pod wartością bezwzględną:

$$-x-3-x+2 = 6$$
$$-2x = 7$$
$$x = -{7}/{2}$$

Pozostaje jedynie sprawdzić:
$$-{7}/{2}$$ <= $$-3$$

Jest to prawda - uzyskaliśmy drugie rozwiązanie.

Metoda ta działa także w przypadku większej ilości wartości bezwzględnych - rozpatrujemy wtedy po prostu większą liczbę przedziałów.

Możemy przejść zatem do drugiej części: wartości bezwzględnej zagnieżdżonej wewnątrz innej:

$$||x+1| - 3| = 3$$

Metoda rozwiązywania takiego typu równań opiera się opuszczaniu wartości bezwzględnej od tej będącej w samym środku do tej na wierzchu. W tym przypadku oznacza to, że najpierw opuścimy $$|x+1|$$.

Rozbijamy to na dwa przypadki:
1) $$x$$ > $$-1$$ i wartość bezwzględna nie zmienia znaku
$$|x+1 - 2| =3$$
$$|x-2| =3$$

Znowu musimy rozbić to na dwa przypadki, pamiętając jednak, że w tym momencie rozpatrujemy jedynie $$x$$-y większe od $$-1$$.

1.1) $$x$$ > $$2$$ - wartość bezwzględna nie zmienia znaku
$$x-2 = 3$$
$$x = 5$$

Uzyskaliśmy rozwiązanie i mieści się ono w naszych przedziałach $$>-1$$ i $$>2$$.

1.2) $$x$$ <= $$2$$ - wartość bezwzględna zmienia znak
$$-x-2 = 3$$
$$x = -1$$

Uzyskaliśmy rozwiązanie, ale nie mieści się ono w naszych przedziałach - nie jest $$>-1$$. Odrzucamy je.

2) $$x <= -1$$ i wartość bezwzględna zmienia znak
$$|-x-1-3| = 3$$
$$|-x-4| = 3$$

Ponownie rozbijamy na dwa przypadki:
2.1) $$x$$ < $$-4$$ - wartość bezwzględna nie zmienia znaku
$$-x-4 =3$$
$$x = -7$$

Rozwiązanie spełnia oba kryteria.
2.2) $$x$$ > $$-4$$ - wartość bezwzględna zmienia znak
$$x + 4 = 3$$
$$x = -1$$

To rozwiązanie także spełnia oba kryteria.

To, co zrobiliśmy w rozwiązaniu, można czytelnie pokazać na schemacie:

1


Warto jeszcze wspomnieć, że nie ma znaczenia to, w którym przypadku umieścimy przypadek, gdy wartość bezwzględna jest równa zero - zależy to jedynie od naszego wyboru. Dobrze jest jednak mieć stały nawyk korzystania ze znaku "większy-równy" albo "mniejszy-równy" - będziemy wtedy mieli gwarancję, że nie zapomnimy uwzględnić tego w rozwiązaniu.

Rozwiązywanie bardziej złożonych równań z wartością bezwzględną to po prostu stosowanie tych dwóch metod - trzeba jedynie pamiętać, aby:

1) opusczać wszystkie wartości bezwzględne stojące "na tym samym poziomie" jednocześnie
2) przed opuszczeniem wartości zewnętrznej zająć się wartością wewnątrz

Spis treści

Rozwiązane zadania
Cena brutto komputera jest równa cenie netto plus 23% podatku

 

Obliczamy cenę brutto komputera: 

 

 

Obliczamy, jaki procent ceny {premium}brutto stanowi podatek VAT: 

   

 

 

 

 

n - cena netto tego komputera

 

 

 

 

 

 

 

Obliczamy, ile procent ceny brutto stanowi cena netto

 

 

 

 

n - cena netto

b - cena brutto

 

 

 

 

 

 

 

 

Obliczamy cenę brutto komputera, gdyby jego cena netto została podniesiona o 100 zł (czyli gdyby cena netto wynosiła 2100+100=2200 zł)

Zostało to już obliczone w podpunkcie a) - cena brutto tego komputera wynosiłaby wtedy 2706 zł. 

Rzucamy raz sześcienną kostką

 

Jeśli wyrzucimy 1, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 2 wyniki - orzeł lub reszka. 

Jeśli wyrzucimy 2, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 4 wyniki - na każdym z dwóch miejsc możemy postawić orła lub reszkę (2∙2=4).

Jeśli wyrzucimy 3, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 8 wyników - na każdym z trzech miejsc możemy postawić orła lub reszkę (2∙2∙2=8).

Jeśli wyrzucimy 4, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 16 wyników - na każdym z czterech miejsc możemy postawić orła lub reszkę (2∙2∙2∙2=16).

Jeśli wyrzucimy 5, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 32 wyników - na każdym z pięciu miejsc możemy postawić orła lub reszkę (2∙2∙2∙2∙2=32).

Jeśli wyrzucimy 6, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 64 wyników - na każdym z sześciu miejsc możemy postawić orła lub reszkę (2∙2∙2∙2∙2∙2=64).

 

Liczba wszystkich możliwości jest więc równa:

 

 

 

 

Wyniki doświadczenia rozpoczynające się od liczby nieparzystej to:

Jeśli wyrzucimy 1, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 2 wyniki - orzeł lub reszka. 

Jeśli wyrzucimy 3, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 8 wyników - na każdym z trzech miejsc możemy postawić orła lub reszkę (2∙2∙2=8).

Jeśli wyrzucimy 5, to na kolejncyh pozycjach (nie licząc pierwszej) możemy uzyskać 32 wyników - na każdym z pięciu miejsc możemy postawić orła lub reszkę (2∙2∙2∙2∙2=32).

Ilość wyników nieparzystych:

 

 

Pozostałe wyniki rozpoczynają się więc od liczby parzystej, czyli ich ilość jest równa:

 

 

Wyników zaczynających się od liczby parzystej jest więc rzeczywiście 2 razy więcej niż tych zaczynających się od liczby nieparzystej:

 

 

Dla jakich wartości parametru k...

 

Zauważmy, że wraz ze wzrostem n-ów mianownik będzie rosnąc. Jeżeli w liczniku będzie liczba dodatnia to wartość wyrażenia będzie maleć. Zatem:

 

 

 

 

Zauważmy, że:

 

będzie maleć gdy k będzie dodatnie, gdyż wraz ze wzrostem n-ów wartość wyrażenia będzie maleć. A więc:

 

Sprawdź, czy wektory ...

Wektory u i v mają ten sam kierunek i zwrot gdy istnieje dodatnia liczba a taka, że u=av.

 

 

 

 

 

Wektory u i v mają wspólny kierunek, lecz przeciwny zwrot. {premium}

 

 

 

 

 

 

Wektory u i v mają wspólny kierunek i zwrot.

 

 

 

 

 

 

 

 

Takie a nie istnieje.

Wektory mają różne zwroty i kierunki.

 

       

  

 
 

 

  

 

 

Istnieje takie a, czyli wektory u i v mają zgodne zwroty i kierunki.  

Liczba r jest pierwiastkiem wielomianu W(x)...

 

Obliczamy:

 

Z twierdzenia Bezouta wiemy, że liczba  jest pierwiastkiem wielomianu  wtedy i tylko wtedy,

gdy  

Sprawdźmy, dla jakiego  tak jest.

 

 

 

 

Wówczas wielomian  ma postać:

 

Wiemy, że liczba  jest pierwiastkiem wielomianu  

Oznacza to, że wielomian  jest podzielny przez dwumian  

Wykonajmy dzielenie  algorytmem Hornera:

         
         
         

 

W wyniku dzielenia wielomianu  przez dwumian  

otrzymaliśmy iloraz  

Wielomian  możemy zapisać następująco:

 

{premium}

 

Szukamy teraz pierwiastków trójmianu  Jest to trójmian kwadratowy, więc obliczamy:

 

 

Odp. Pozostałe pierwiastki wielomianu  to:  


 

Obliczamy:

 

 

Z twierdzenia Bezouta wiemy, że liczba  jest pierwiastkiem wielomianu  wtedy i tylko wtedy,

gdy  

Sprawdźmy, dla jakiego  tak jest.

 

 

 

 

Wówczas wielomian  ma postać:

 

Wiemy, że liczba  jest pierwiastkiem wielomianu  

Oznacza to, że wielomian  jest podzielny przez dwumian  

Wykonajmy dzielenie  algorytmem Hornera:

          
         
         

 

W wyniku dzielenia wielomianu  przez dwumian  

otrzymaliśmy iloraz  

Wielomian  możemy zapisać następująco:

 

Niech  

 

Szukamy teraz pierwiastków trójmianu  Jest to trójmian kwadratowy, więc obliczamy:

 

 

Odp. Pozostałe pierwiastki wielomianu  to:  


 

Obliczamy:

 

Z twierdzenia Bezouta wiemy, że liczba  jest pierwiastkiem wielomianu  wtedy i tylko wtedy,

gdy  

Sprawdźmy, dla jakiego  tak jest.

 

 

 

 

 

Wówczas wielomian  ma postać:

 

Wiemy, że liczba  jest pierwiastkiem wielomianu  

Oznacza to, że wielomian  jest podzielny przez dwumian  

Wykonajmy dzielenie  algorytmem Hornera:

         
          
         

 

W wyniku dzielenia wielomianu  przez dwumian  

otrzymaliśmy iloraz  

Wielomian  możemy zapisać następująco:

 

 

Szukamy teraz pierwiastków trójmianu  Jest to trójmian kwadratowy, więc obliczamy:

 

 

Odp. Pozostałe pierwiastki wielomianu  to:  


 

Obliczamy:

 

Z twierdzenia Bezouta wiemy, że liczba  jest pierwiastkiem wielomianu  wtedy i tylko wtedy,

gdy  

Sprawdźmy, dla jakiego  tak jest.

 

 

 

 

 

Wówczas wielomian  ma postać:

 

Wiemy, że liczba  jest pierwiastkiem wielomianu  

Oznacza to, że wielomian  jest podzielny przez dwumian  

Wykonajmy dzielenie  algorytmem Hornera:

         
         
         

 

W wyniku dzielenia wielomianu  przez dwumian  

otrzymaliśmy iloraz  

Wielomian  możemy zapisać następująco:

 

Niech  

 

Szukamy teraz pierwiastków trójmianu  Jest to trójmian kwadratowy, więc obliczamy:

 

 

Odp. Pozostałe pierwiastki wielomianu  to:  

Wyznacz punkty

 

  

 

 

  

 

Pole obszaru ograniczonego osiami układu i wykresem funkcji to {premium}pole trójkąta prostokątnego o przyprostokątnych 9 i 3:

 

 

 

 

 

 

 

 

Pole obszaru ograniczonego osiami układu i wykresem funkcji to pole trójkąta prostokątnego o przyprostokątnych 14 i 8:

 

 

 

 

 

 

 

Pole obszaru ograniczonego osiami układu i wykresem funkcji to pole trójkąta prostokątnego o przyprostokątnych 2,5 i 7,5:

 

 

 

 

Nie trzeba pamiętać podanych powyżej wzorów. Wystarczy rozumieć, co oznacza punkt przecięcia z daną osią.

Zauważmy, że jeśli punkt przecina oś OX, to jego druga współrzędna jest równa 0. Możemy więc podstawić y=0 i wyliczyć x.

Zróbmy to dla kolejnych przykładów.

 

 

 

 

  

 

 

 

 

 

   

   

 

 

 

 

 

 

 

Zauważmy, że jeśli punkt przecina oś OY, to jego pierwsza współrzędna jest równa 0. Możemy więc podstawić x=0 i wyliczyć y.

Zróbmy to dla kolejnych przykładów.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dla jakich wartości parametru a

Liczba 5 ma być dwukrotnym pierwiastkiem wielomianu w. Z powyższej postaci widać, że liczba 5 jest już jednokrotnym pierwiastkiem wielomianu w. Aby była dwukrotnym pierwiastkiem wielomianu w, musi być jednokrotnym pierwiastkiem wielomianu u: 

 

Musimy jeszcze sprawdzić, czy dla a=6 liczba 5 jest rzeczywiście tylko jednokrotnym pierwiastkiem wielomianu u: 

 

Liczba 5 jest jednokrotnym pierwiastkiem wielomianu w, jest więc dwukrotnym pierwiastkiem wielomianu w. Możemy zapisać odpowiedź:

 

 

 

 

 

Liczba 3 ma być dwukrotnym pierwiastkiem wielomianu w. Z powyższej postaci widać, że liczba 3 jest już jednokrotnym pierwiastkiem wielomianu w. Aby była dwukrotnym pierwiastkiem wielomianu w, musi być jednokrotnym pierwiastkiem wielomianu u: 

 

Otrzymaliśmy dwie wartości a. Musimy sprawdzić, czy dla tych wartości liczba 3 jest rzeczywiście jednokrotnym pierwiastkiem wielomianu u:

W tym przypadku liczba a jest jednokrotnym pierwiastkiem wielomianu u.

 

W tym przypadku liczba a jest jednokrotnym pierwiastkiem wielomianu u.

 

W obu przypadkach liczba 3 jest jednokrotnym pierwiastkiem wielomianu w, jest więc dwukrotnym pierwiastkiem wielomianu w. Możemy zapisać odpowiedź:

 

 

 

 

Jeśli liczba -½ ma być dwukrotnym pierwiastkiem wielomianu w, to wielomian w musi być iloczynem wyrażenia (x+½)² oraz pewnego innego wyrażenia. To drugie wyrażenie musi być stopnia drugiego (ponieważ wielomian w jest stopnia 4, a wielomian (x+½)²  jest stopnia 2, a 4-2=2). Możemy więc zapisać:

Wykonajmy działania i uporządkujmy powyższy wielomian ze względu na x:

 

Z drugiej strony z treści zadania wiemy, że wielomian w jest postaci:

 

Dwa wielomiany są równe, jeśli mają jednakowe współczynniki stojące przy tych samych potęgach, więc możemy zapisać:

Jedyną liczbą, która spełnia oba podkreślone warunki, jest a=2.

Parametry są więc liczbami:

Wtedy wielomian w(x) jest postaci:

Z równości oznaczonej gwiazdką możemy jednak zapisać ten wielomian w postaci iloczynowej i sprawdzić, że dla obliczonych wartości parametrów liczba -½ jest rzeczywiście tylko dwukrotnym pierwiastkiem wielomianu w:

Dla czynnika kwadratowego otrzymaliśmy inne niż -½ pierwiastki, więc możemy zapisać rozwiązanie:

 

 

 

 

Jeśli liczba -1 ma być trzykrotnym pierwiastkiem wielomianu w, to wielomian w musi być iloczynem wyrażenia (x+1)³ oraz pewnego innego wyrażenia. To drugie wyrażenie musi być stopnia pierwszego (ponieważ wielomian w jest stopnia 4, a wielomian (x+1)³  jest stopnia 3, a 4-3=1). Możemy więc zapisać:

Wykonajmy działania (korzystając przy tym ze wzoru skróconego mnożenia na sześcian sumy) i uporządkujmy powyższy wielomian ze względu na x:

 

Z drugiej strony z treści zadania wiemy, że wielomian w jest postaci:

Dwa wielomiany są równe, jeśli mają jednakowe współczynniki stojące przy tych samych potęgach, więc możemy zapisać:

Jedyną liczbą, która spełnia oba podkreślone warunki, jest a=2.

Parametry są więc liczbami:

Wtedy wielomian w(x) jest postaci:

Z równości oznaczonej gwiazdką możemy jednak zapisać ten wielomian w postaci iloczynowej i sprawdzić, że dla obliczonych wartości parametrów liczba -1 jest rzeczywiście tylko trzykrotnym pierwiastkiem wielomianu w:

Czwarty pierwistek wielomianu w to 2, więc liczba -1 jest trzykrotnym pierwiastkiem tego wielomianu. Możemy więc zapisać odpowiedź:

 

 

 

Uzasadnij równość, jeżeli...

 

 

 

 

 

 

 

 

 

Równość zachodzi.

 

 

 

 

 

 

 

Równość zachodzi.

 

 

 

 

 

 

 

 

 

 

Równość zachodzi.

 

 

 

 

 

 

 

 

 

 

Równość zachodzi.

 

 

 

 

 

 

 

 

 

Równość zachodzi.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Równość zachodzi.

Wykaż, że nie istnieje ...

 

 {premium}

 

 

 

   

 

    

Na jednej prostej zaznaczono

Najpierw obliczymy, ile jest trójkątów, których wierzchołki leżą w zaznaczonych punktach. 

Możemy wybrać 2 wierzchołki z górnej prostej i 1 wierzchołek z dolnej prostej lub wybrać 1 wierzchołek z górnej prostej oraz 2 wierzchołki z dolnej prostej. 

  

        

 

 

 

Teraz obliczymy, ile jest czworokątów, których wierzchołki leżą w zaznaczonych punktach. 

Musimy wybrać 2 wierzchołki z górnej prostej i 2 wierzcholki z dolnej prostej.