Suma i różnica funkcji - matura-rozszerzona - Baza Wiedzy

Suma i różnica funkcji

Drugim typem popularnych wzorów wymaganych do zrobienia zadań maturalnych są te pozwalające zamienić sumę funkcji trygonometrycznych na ich iloczyn. Nie trzeba ich pamiętać jakoś bardzo dokładnie, należy jedynie znać ogólny schemat ich tworzenia - jeśli zauważymy w zadaniu coś "podejrzanego", zawsze można sięgnąć do tablic i sprawdzić detale.

$$sin x + sin y = 2 sin ({x+y}/{2}) cos ({x-y}/{2})$$
$$sin x - sin y = 2 sin ({x-y}/{2}) cos ({x+y}/{2})$$
$$cos x + cos y = 2 cos ({x+y}/{2}) cos ({x-y}/{2})$$
$$cos x - cos y = 2 sin ({x+y}/{2}) sin ({x-y}/{2})$$


Jak sobie poradzić w sytuacji, gdy mamy na przykład dodać $$sin x$$ i $$cos y$$? Możemy skorzystać z poznanych wzorów redukcyjnych zamieniając po prostu $$cos y$$ na $$sin (90°-y)$$ i korzystać później normalnie ze wzoru na sumę sinusów.

Nieco inaczej jest z tangensami i cotangensami - tutaj wzory na sumę i różnicę dwóch różnych funkcji nieco ułatwiają pracę.

$$ an x + an y = {sin (x+y)}/{cos x cos y}$$
$$ an x - an y = {sin (x-y)}/{cos x cos y}$$
$$ctg x + ctg y = {sin (x+y)}/{sin x sin y}$$
$$ctg x - ctg y = {sin (x-y)}/{sin x sin y}$$

Oraz:

$$ctg x + an y = {cos (x-y)}/{cos x sin(y)}$$
$$ctg x - an y = {cos (x+y)}/{sin x cos(y)}$$


Aby przećwiczyć nowopoznane wzory, weźmy się do rozwiązywania równań i nierówności (w następnym temacie).

Spis treści

Rozwiązane zadania
Dane są wielomiany

`a)`

Wielomian stopnia trzeciego to taki, w którym najwyższa potęga x to 3. 

Ten wielomian to to v(x)

 

`v(x)=x^3-6x^2+4`

`a_3=1`

`a_2=-6`

`a_1=0`

`a_0=4`

 

 

`b)`

Wielomian stopnia piątego to taki, w którym najwyższa potęga x to 5. 

Ten wielomian to w(x). 

`w(x)=-1/6x^5+1/4x^4-1/3x^3+1/2x-1`

`a_5=-1/6`

`a_4=1/4`

`a_3=-1/3`

`a_2=0`

`a_1=1/2`

`a_0=-1`

 

`a_5+a_4+a_3+a_2+a_1+a_0=-1/6+1/4-1/3+0+1/2-1=`

`=-2/12+3/12-4/12+6/12-12/12=-9/12=-3/4`

Rozwiąż układy równań metodą przeciwnych współczynników

`a)`

`{(-3x+2y=-7\ \ \ |*(-1)), (5x+2y=1):}`

`{(3x-2y=7), (5x+2y=1):}\ \ \ |+`

`{(8x=8\ \ |:8), (5x+2y=1):}`

`{(x=1), (5*1+2y=1\ \ |-5):}`

`{(x=1), (2y=-4\ \ |:2):}`

`{(x=1), (y=-2):}`

 

 

`b)`

`{((7x-3y)/5=(5x-y)/3-(x+y)/2\ \ \ |*30), (3(x-1)=5(y+1)):}`

`{(6(7x-3y)=10(5x-y)-15(x+y)), (3x-3=5y+5\ \ |-5y+3):}`

`{(42x-18y=50x-10y-15x-15y), (3x-5y=8):}`

`{(42x-18y=35x-25y\ \ \ |-35x+25y), (3x-5y=8):}`

`{(7x+7y=0\ \ |:7), (3x-5y=8):}`

`{(x+y=0\ \ \ |*(-3)), (3x-5y=8):}`

`{(-3x-3y=0), (3x-5y=8):}\ \ \ |+`

`{(-8y=8\ \ |:(-8)), (-3x-3y=0):}`

`{(y=-1), (-3x-3*(-1)=0):}`

`{(y=-1), (-3x+3=0\ \ \ |+3x):}`

`{(y=-1), (3x=3\ \ |:3):}`

`{(y=-1), (x=1):}`

 

 

 

 

`c)`

`{(2x-3y-1=(x-5y)/2-1/2\ \ \ |*2), (1 3/4y-1/4x=(3y)/2+1/4\ \ \ |*4):}`

`{(4x-6y-2=x-5y-1\ \ \ |-x+5y+2), (7y-x=6y+1\ \ |-6y):}`

`{(3x-y=1), (y-x=1):}`

`{(3x-y=1), (-x+y=1):}\ \ \ |+`

`{(2x=2\ \ |:2), (-x+y=1\ \ |+x):}`

`{(x=1), (y=1+x=1+1=2):}`

 

 

 

`d)`

`{((x-4)(x+4)=(x+2)^2-y), ((2x-y)/2-(x-y)/3=1\ \ \ |*6):}`

`{(x^2-16=x^2+4x+4-y\ \ |-x^2), (3(2x-y)-2(x-y)=6):}`

`{(-16=4x+4-y\ \ |-4), (6x-3y-2x+2y=6):}`

`{(-20=4x-y), (4x-y=6):}`

`{(4x-y=-20\ \ |*(-1)), (4x-y=6):}`

`{(-4x+y=20), (4x-y=6):}\ \ \ |+`

`{(0=26), (4x-y=6):}`

Układ jest sprzeczny - nie ma rozwiązań.    

     

` `

 

 

Rozłóż wielomian w na czynniki

`a)`

`w(x)=(20x^3-28x^2+8x)(x^4+6x^3+2x^2+12x)=`

`\ \ \ \ \ \ \ =(4x(5x^2-7x+2))*(x^4+2x^2+6x^3+12x)=`

`\ \ \ \ \ \ \ =(4x(5x^2-7x+2))*(x^2(x^2+2)+6x(x^2+2))=`

`\ \ \ \ \ \ \ =(4x(5x^2-7x+2))*(#((x^2+2))^(Delta=0-8<0)(x^2+6x))=`

`\ \ \ \ \ \ \ =4x#(ul(ul((5x^2-7x+2))))^((**))(x^2+2)(x+6)x=...`

  

 

`\ \ \ \ \ \ \ \ \ (**)`

`\ \ \ \ \ \ \ \ \ Delta=(-7)^2-4*5*2=49-40=9`

`\ \ \ \ \ \ \ \ \ \ sqrtDelta=3`

`\ \ \ \ \ \ \ \ \ x_1=(7-3)/(2*5)=4/10=2/5`

`\ \ \ \ \ \ \ \ \ x_2=(7+3)/(2*5)=10/10=1`

 

 

`\ \ ...=4x*5(x-2/5)(x-1)(x^2+2)(x+6)x=`

`\ \ \ \ \ \ =20x^2(x-2/5)(x-1)(x+6)(x^2+2)`

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )`

 

 

 

 

 

`b)`

`w(x)=#((-1/4x^4-2x^3-4x^2))^a#((x^3-7x^2-4x+28))^b=...`

 

 

`\ \ \ \ \ \ \ a=-1/4x^4-2x^3-4x^2=-1/4x^2(x^2+8x+16)=-1/4x^2(x+4)^2`

`\ \ \ \ \ \ \ b=x^3-7x^2-4x+28=x^2(x-7)-4(x-7)=(x-7)(x^2-4)=(x-7)(x-2)(x+2)`

 

 

`...=-1/4x^2(x+4)^2(x-7)(x-2)(x+2)`

 `overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )` 

 

 

 

 

 

`c)`

`w(x)=#((7x^4+14x^3-21x^2))^a#((x^5-4x^3-x^2+4))^b=...`

 

 

`\ \ \ \ \ \ \ a=7x^4+14x^3-21x^2=7x^2(x^2+2x-3)=7x^2(x+3)(x-1)`

`\ \ \ \ \ \ \ \ \ \ \ \ \ Delta=2^2-4*1*(-3)=4+12=16`

`\ \ \ \ \ \ \ \ \ \ \ \ \ sqrtDelta=4`

`\ \ \ \ \ \ \ \ \ \ \ \ \ x_1=(-2-4)/2=-6/2=-3`

`\ \ \ \ \ \ \ \ \ \ \ \ \ x_2=(-2+4)/2=2/2=1`

 

`\ \ \ \ \ \ \ b=x^5-4x^3-x^2+4=x^3(x^2-4)-1(x^2-4)=(x^2-4)(x^3-1)=`

`\ \ \ \ \ \ \ \ \ =(x-2)(x+2)(x-1)#((x^2+x+1))^(Delta=1-4<0)`

 

 

`...=7x^2(x+3)(x-1)(x-2)(x+2)(x-1)(x^2+x+1)=`

`\ \ \ \ \ =7x^2(x-2)(x-1)^2(x+2)(x+3)(x^2+x+1)`

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )`

 

 

 

 

 

`d)`

`w(x)=#((3x^4-2x^3+1/3x^2))^a#((x^6-1))^b=...`

 

`\ \ \ \ \ \ \ \ \ a=3x^4-2x^3+1/3x^2=1/3x^2(9x^2-6x+1)=1/3x^2(3x-1)^2`

`\ \ \ \ \ \ \ \ \ b=x^6-1=(x^2)^3-1^3=(x^2-1)(x^4+x^2+1)=(x-1)(x+1)(x^4+x^2+1)=`

`\ \ \ \ \ \ \ \ \ \ \ =(x-1)(x+1)(ul(ul(x^4+2x^2+1))-x^2)=(x-1)(x+1)((x^2+1)^2-x^2)=`

`\ \ \ \ \ \ \ \ \ \ \ =(x-1)(x+1)#((x^2+1-x))^(Delta=1-4<0)#((x^2+1+x))^(Delta=1-4<0)`

 

 

`...=1/3x^2(3x-1)^2(x-1)(x+1)(x^2-x+1)(x^2+x+1)`

`overline(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ )`

Oblicz

`a)\ (-2)^5=-32`

`\ \ \ (-2)^(-5)=1/(-2)^5=-1/32`

`\ \ \ 2^-5=1/2^5=1/32`

 

`b)\ (1/3)^-2=3^2=9`

`\ \ \ (-1/3)^-2=(-3)^2=9`

`\ \ \ (-1/3)^-3=(-3)^-3=-27`

 

`c)\ (sqrt3)^4=3^2=9`

`\ \ \ (sqrt3)^-2=1/(sqrt3)^2=1/3`

`\ \ \ (sqrt3)^-6=1/(sqrt3)^6=1/3^3=1/27`

 

`d)\ (sqrt2)^6=2^3=8`

`\ \ \ (sqrt2)^7=(sqrt2)^6*sqrt2=2^3*sqrt2=8sqrt2`

`\ \ \ (sqrt2)^-8=1/(sqrt2)^8=1/2^4=1/16`

Wyznacz współczynniki a, b, c we wzorze funkcji kwadratowej

`a)`

`{(f(1)=-2), (f(3)=6), (f(0)=0):}`

`{(a*1^2+b*1+c=-2), (a*3^2+b*3+c=6), (a*0^2+b*0+c=0):}`

`{(a+b+c=-2), (9a+3b+c=6), (c=0):}`

`{(c=0), (a+b=-2), (9a+3b=6\ \ \ |:(-3)):}`

`{(c=0), (a+b=-2), (-3a-b=-2):}`

Dodajemy stronami dwa ostatnie równania:

`{(c=0), (-2a=-4\ \ |:(-2)), (a+b=-2):}`

`{(c=0), (a=2), (2+b=-2\ \ |-2):}`

`{(a=2), (b=-4), (c=0):}`

 

 

 

 

 

`b)`

`{(f(-1)=9), (f(1)=9), (f(0)=-5):}`

`{(a*(-1)^2+b*(-1)+c=9), (a*1^2+b*1+c=9), (a*0^2+b*0+c=-5):}`

`{(a-b+c=9), (a+b+c=9), (c=-5):}`

`{(c=-5), (a-b-5=9\ \ |+5), (a+b-5=9\ \ |+5):}`

`{(c=-5), (a-b=14), (a+b=14):}`

Dodajemy stronami dwa ostatnie równania:

`{(c=-5), (2a=28\ \ |:2), (a+b=14):}`

`{(c=-5), (a=14), (14+b=14\ \ |-14):}`

`{(a=14) , (b=0), (c=-5):}`

 

 

 

 

 

`c)`

`{(f(-2)=-10), (f(4)=-10), (f(1)=2):}`

`{(a*(-2)^2+b*(-2)+c=-10), (a*4^2+b*4+c=-10), (a*1^2+b*1+c=2):}`

`{(4a-2b+c=-10), (16a+4b+c=-10), (a+b+c=2\ \ |-a-b):}`

`{(4a-2b+c=-10), (16a+4b+c=-10), (c=2-a-b):}`

`{(4a-2b+2-a-b=-10\ \ |-2), (16a+4b+2-a-b=-10\ \ \ |-2), (c=2-a-b):}`

`{(3a-3b=-12\ \ |:3), (15a+3b=-12\ \ |:3), (c=2-a-b):}`

`{(a-b=-4), (5a+b=-4), (c=2-a-b):}`

Dodajemy stronami dwa pierwsze równania:

`{(6a=-8\ \ \ |:6),(5a+b=-4\ \ |-5a), (c=2-a-b):}`

`{(a=-8/6=-4/3), (b=-4-5a=-4-5*(-4/3)=-4+20/3=-4+6 2/3=2 2/3), (c=2-(-4/3)-2 2/3=2+1 1/3-2 2/3=2/3):}`

 

 

 

 

`d)`

`{(f(-2)=1) , (f(-4)=-3), (f(0)=-3):}`

`{(a*(-2)^2+b*(-2)+c=1), (a*(-4)^2+b*(-4)+c=-3), (a*0^2+b*0+c=-3):}`

`{(4a-2b+c=1), (16a-4b+c=-3), (c=-3):}`

`{(c=-3), (4a-2b-3=1\ \ |+3), (16a-4b-3=-3\ \ |+3):}`

`{(c=-3), (4a-2b=4\ \ |:2), (16a-4b=0\ \ |:4):}`

`{(c=-3), (2a-b=2), (4a-b=0\ \ |+b):}`

`{(c=-3), (b=4a), (2a-4a=2\ \ |:(-2)):}`

`{(c=-3), (a=-1), (b=4*(-1)=-4):}`

 

Podaj odpowiednie założenia i wykonaj działanie

`a)`

`{(xne0), (2xne0):}\ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ => \ \ \ D=RR\\{0}`

 

`6/x+5/(2x)=12/(2x)+5/(2x)=17/(2x)`

 

 

 

`b)`

`{(3xne0), (4xne0):}\ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ =>\ \ \ D=RR\\{0}`

 

`4/(3x)-3/(4x)=16/(12x)-9/(12x)=7/(12x)`

 

 

`c)`

`{(x-2ne0), (2x-4ne0):}\ \ \ =>\ \ \ {(xne2), (xne2):}\ \ \ =>\ \ \ D=RR\\{2}`

 

`3/(x-2)+x/(2x-4)=6/(2x-4)+x/(2x-4)=(6+x)/(2x-4)`

 

 

 

`d)`

`{(3x+3ne0), (x+1ne0):} \ \ \ =>\ \ \ {(xne-1), (xne -1):}\ \ \ =>\ \ \ D=RR\\{-1}`

 

`x/(3x+3)-1/(x+1)=x/(3x+3)-3/(3x+3)=(x-3)/(3x+3)`

 

 

`e)`

`{(x-3ne0), (4x-12ne0):}\ \ \ =>\ \ \ {(xne3), (xne3):}\ \ \ =>\ \ \ D=RR\\{3}`

 

`(x+1)/(x-3)+(2x-5)/(4x-12)=(4x+4)/(4x-12)+(2x-5)/(4x-12)=(4x+4+2x-5)/(4x-12)=(6x-1)/(4x-12)`

 

 

`f)`

`{(3x+6ne0), (x+2ne0):}\ \ \ =>\ \ \ {(xne-2), (xne-2):}\ \ \ =>\ \ \ D=RR\\{-2}`

 

`(2x-1)/(3x+6)-(x-1)/(x+2)=(2x-1)/(3x+6)-(3x-3)/(3x+6)=((2x-1)-(3x-3))/(3x+6)=(2x-1-3x+3)/(3x+6)=(-x+2)/(3x+6)`

Podaj odpowiednie założenia i wykonaj dzielenie

`a)`

`{(4xne0), (2x^2ne0):}\ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ =>\ \ \ D=RR\\{0}`

 

`3/(4x):1/(2x^2)=3/(4strikex)*2x^strike2=(6x)/4=(3x)/2`

 

`x=-1/2inD\ \ \ =>\ \ \ (3x)/2=(3*(-1/2)):2=-3/2*1/2=-3/4`

 

 

 

`b)`

`{(5x^2ne0), (10xne0):} \ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ =>\ \ \ D=RR\\{0}`

 

`6/(5x^2):3/(10x)=strike6^2/(5x^2)*(10x)/strike3^1=(20x)/(5x^2)=4/x`

 

`x=-1/2inD\ \ \ =>\ \ \ 4/x=4/(-1/2)=4:(-1/2)=4*(-2)=-8`

 

 

 

 

`c)`

`{(x^2ne0), (xne0):}\ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ =>\ \ \ D=RR\\{0}`

 

`(4x+2)/(x^2):2/x=(strike2*(2x+1))/(x^2)*x/strike2^1=((2x+1)*x)/x^2=(2x+1)/x`

 

`x=-1/2inD\ \ \ =>\ \ \ (2x+1)/(x)=(2*(-1/2)+1)/(-1/2)=0`

 

 

 

`d)`

`{(xne0), (x^2ne0):}\ \ \ =>\ \ \ {(xne0), (xne0):}\ \ \ =>\ \ \ D=RR\\{0}`

 

`(6x-9)/x:3/x^2=(strike3*(2x-3))/x*x^2/strike3^1=((2x-3)*x^2)/x=(2x-3)x`

 

 

`x=-1/2inD\ \ \ =>\ \ \ (2x-3)*x=(2*(-1/2)-3)*(-1/2)=(-1-3)*(-1/2)=(-4)*(-1/2)=2`

 

 

 

`e)`

`{(x-4ne0), (2x-8ne0):}\ \ \ =>\ \ \ {(xne4), (xne4):}\ \ \ =>\ \ \ D=RR\\{4}`

 

`x/(x-4):3/(2x-8)=x/strike(x-4)*(2*strike((x-4)))/3=(2x)/3`

 

`x=-1/2inD\ \ \ =>\ \ \ (2x)/3=(2*(-1/2))/3=-1/3`

 

 

 

`f)`

`{(3x-1ne0), (2-6xne0):}\ \ \ =>\ \ \ {(xne1/3), (xne2/6):}\ \ \ =>\ \ \ D=RR\\{1/3}`

 

`(20x)/(3x-1):5/(2-6x)=(strike20^4x)/strike(3x-1)*(-2*strike((3x-1)))/strike5^1=-8x`

 

`x=-1/2inD\ \ \ =>\ \ \ -8x=-8*(-1/2)=4`

          

Podaj odpowiednie założenia i wykonaj działanie

`a)`

`x-2ne0\ \ \ =>\ \ \ x ne2\ \ \ =>\ \ \ D=RR\\{2}`

 

`x/(x-2)+(2-2x)/(x-2)=(x+2-2x)/(x-2)=(-x+2)/(x-2)=((-1)*(x-2))/(x-2)=-1`

 

 

 

`b)`

`{(2x-1ne0), (1-2xne0):}\ \ \ =>\ \ \ {(xne1/2), (xne1/2):}\ \ \ =>\ \ \ D=RR\\{1/2}`

  

`(x+3)/(2x-1)+(3x+1)/(1-2x)=(x+3)/(2x-1)+(3x+1)/((-1)*(2x-1))=(x+3)/(2x-1)+(-3x-1)/(2x-1)=(x+3-3x-1)/(2x-1)=(-2x+2)/(2x-1)`

 

 

`c)`

`{(x+4ne0), (2x+8ne0):}\ \ \ =>\ \ \ {(xne-4),(xne-4):}\ \ \ =>\ \ \ D=RR\\{-4}`

 

`(-x)/(x+4)-(3-x)/(2x+8)=(-2x)/(2x+8)-(3-x)/(2x+8)=(-2x-(3-x))/(2x+8)=(-2x-3+x)/(2x+8)=(-x-3)/(2x+8)`

 

 

 

`d)`

`{(2-3xne0), (6x-4ne0):}\ \ \ =>\ \ \ {(xne2/3), (xne4/6):}\ \ \ =>\ \ \ D=RR\\{2/3}`

 

`2/(2-3x)-(1+x)/(6x-4)=(-4)/(6x-4)-(1+x)/(6x-4)=(-4-(1+x))/(6x-4)=(-4-1-x)/(6x-4)=(-x-5)/(6x-4)`

 

 

`e)`

`{(2x+4ne0), (3x+6ne0):}\ \ \ =>\ \ \ {(xne-2), (xne-2):}\ \ \ =>\ \ \ D=RR\\{-2}`

 

`(x-1)/(2x+4)+(x+7)/(3x+6)=(3x-3)/(6x+12)+(2x+14)/(6x+12)=(3x-3+2x+14)/(6x+12)=(5x+11)/(6x+12)`

 

 

`f)`

`{(10x-15ne0), (2x-3ne0):}\ \ \ =>\ \ \ {(xne 15/10), (xne3/2):}\ \ \ =>\ \ \ D=RR\\{3/2}`

 

`(2x)/(10x-15)-(x-2)/(2x-3)=(2x)/(10x-15)-(5x-10)/(10x-15)=(2x-(5x-10))/(10x-15)=(2x-5x+10)/(10x-15)=(-3x+10)/(10x-15)`

 

Klub zrzeszający dwunastu hodowców gołębi

Wiemy, że średnia ilość gołębi to 50. Liczba członków klubu wynosi 12. Oznacza to, że po dodaniu ilości gołębi pierwszego, drugiego, ..., dwunastego członka i podzieleniu otrzymanej sumy przez 12 otrzymano 50. 

`(x_1+x_2+...+x_12)/12=50` 

 

Jeśli więc pomnożymy 50 razy 12 to otrzymamy sumę liczby wszystkich gołębi tych hodowców (na początku):

`x_1+x_2+...+x_12=50*12` 

`x_1+x_2+...+x_12=600` 

 

Wiemy, że na początku było 600 gołębi.

Jeden z hodowców sprzedał połowę swoich gołębi i zostało mu 36 gołębi. Jeśli sprzedał połowę, to musiał sprzedać tyle samo, ile mu zostało, a więc 36. Liczba wszystkich gołębi zmniejszyła się więc o 36. Liczba hodowców nie zmieniła się (nadal jest równa 12). Możemy obliczyć, ile gołębi przypada teraz średnio na jednego hodowcę:

`(600-36)/12=600/12-36/12=50-3=47`   

Oblicz długość przekątnych AC ...

`a)` 

`"Korzystając ze związków w trójkącie o kątach"\ 30^@,60^@,90^@\ "otrzymujemy:"` 

`"ul(|AC|=2|DC|=4`  

`"Oznaczmy punkt przecięcia przekatnych przez O."` 

`"Kąty wierzchołkowe są sobie równe czyli trójkąty DCO oraz BCO są prostokątne."` 

`"Co więcej trójkąt DCO ma jeden z kątów równy"\ 30^@\ "(kąt przy wierzchołku D").` 

`"Z własności trójkąta prosotokątnego o kątach"\ 30^@, 60^@, 90^@\ "otrzymujemy:"`   

`|CO|=1/2|DC|=1`        

`|DO|=sqrt(3)` 

 

`"Z tw. Pitagorasa:"` 

`|BO|^2=sqrt(2)^2-1^2=1` 

`|BO|=1` 

`ul(|DB|=sqrt(3)+1`  

 

`b)` 

`"Z tw. Pitagorasa:"` 

`|AC|^2=8^2+(10+6)^2=64+256=320` 

`ul(|AC|=8sqrt(5)`  

 

`x^2=8^2+6^2=100` 

`x=10` 

`"Oznaczmy przez O punkt przecięcia przekątnych."` 

`|BO|^2=10^2-(1/2*8sqrt(5))^2=100-80=20` 

`|BO|=2sqrt(5)` 

 

`"Zauważmy, że trójkąt DOC jest równoramienny."` 

`|DO|=1/2|AC|=4sqrt(5)` 

`|DB|=4sqrt(5)+2sqrt(5)=ul(6sqrt(5)` 

 

`c)` 

`"Oznaczmy przez O punkt przecięcia przekątnych."` 

`"Zauważmy, że trójkąt COB jest równoboczny. Wynika to z faktu, że na dowolnym trójkącie prostokątnym możemy opisać okrąg."` 

`|OB|=12` 

`|DB|=ul24`  

 

`|CO|=12` 

`"Z własności trójkątów prostokatnych o boku"\ 30^@:` 

`|AO|=2*12=24` 

 

`|AC|=12+24=ul36` 

 

`d)` 

`"Oznaczmy przez O punkt przecięcia przekątnych czworokąta, a przez X"` 

`"punkt przecięcia wysokości poprowadzonej z B i przekątnej AC."`     

`"Z własności trójkąta prostokatnego, równoramiennego otrzymujemy:"` 

`|OB|=4sqrt(2)` 

`|OX|=4` 

`|XC|^2=5^2-4^2=9` 

`|XC|=3` 

 

`"Zauważmy, że trójkat DAO jest prostokątny i równoramienny."` 

`|AD|=y` 

`(8,5)^2=y^2+(y+4sqrt(2))^2` 

`289/4=y^2+y^2+8ysqrt(2)+32` 

`8y^2+32ysqrt(2)+128-289=0` 

`8y^2+32ysqrt(2)-161=0` 

`Delta=7200` 

`sqrt(Delta)=60sqrt(2)` 

 

`y_1=(-32sqrt(2) -60sqrt(2))/16 <0` 

`y_2=(-32sqrt(2)+60sqrt(2))/16=7/4* sqrt(2)` 

`ul(|BD|=7/4*sqrt(2)+4sqrt(2)=(23sqrt(2))/4` 

 

`|AO|=ysqrt(2)=7/4*sqrt(2)*sqrt(2)=7/2` 

`ul(|AC|=7/2+7=10 1/2`